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Abstract: We report our experimental measurements and theoretical analysis of the position
response function of cold atoms in a magneto-optical trap (MOT) by applying a transient
homogeneous magnetic field as a perturbing force. We observe a transition from a damped
oscillatory motion to an over-damped relaxation, stemming from a competition between the
viscous drag provided by the optical molasses and the restoring force of the MOT. Our observations
are in agreement with the predictions of our model based on the Langevin equation. We also
study the diffusion of the atomic cloud in the optical molasses and find the measured value of
diffusion coefficient matching with the prediction of our theoretical model.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The response of a physical system to an applied force can reveal intrinsic characteristics of the
system such as electric polarisability, impedance of an electronic circuit, magnetic susceptibility
and optical conductivity [1–5]. In a similar context, but without the applied force, the study of
diffusive behaviour can provide crucial information regarding transport properties [6–8].

In recent years, the diffusion of a Brownian particle in the presence of quantum zero-point
fluctuations was analysed in [9,10] starting from the fluctuation-dissipation theorem (FDT) [1,3].
The key input to the analysis presented in [10] is the position response function that describes
how the particle reacts to an externally applied force.

The specific response function employed in that paper was suggested by the model of a viscous
medium. In the present work, we study a concrete experimental realization of such a model, by
utilising a three-dimensional configuration of laser beams known as ‘optical molasses’ which
enables cooling as well as viscous confinement of the atomic cloud. We find agreement (in a
classical regime) with the type of response function that was assumed in [10].

Aside from the intrinsic interest of a direct measurement of the response function, our
experiment lays the groundwork for future experiments that would access the deep quantum
regime, where some of the most interesting effects discussed in [10] would show up.

In this paper, we demonstrate a method to measure the position response function of a cold
atomic cloud in a MOT by temporarily subjecting it to a homogeneous magnetic field (transient
oscillation method [11]). We observe a transition from a damped oscillatory motion to an
over-damped motion of the atomic cloud. This transition stems from a competition between the
reactive spring-like force coming from the magneto-optical trap and the viscous drag due to the
optical molasses.

In this work, we demonstrate that a simple model based on the Langevin equation can be used
to describe the dynamics of the atoms in a MOT in the standard operating conditions at cooling
beam intensities larger than the saturation intensity without utilizing approximations such as
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low intensities of the cooling beams used in [11] . Moreover, our model enables us to extract
microscopic quantities such as the damping coefficient via measurement of the macroscopic
response function.

By turning off the MOT magnetic field, we are also able to study the spatial diffusion of the
cold atoms in the viscous medium of an optical molasses, and we verify the Stokes-Einstein-
Smoluchowski relation, as described in more detail in Appendix B.

The motion of a Brownian particle can be analysed in terms of either the Fluctuation-
Dissipation theorem or the Langevin equation. The FDT (which holds both classically and
quantum mechanically) relates the spontaneous position and velocity fluctuations of a system
in thermal equilibrium to its linear response to an external perturbing force. This allows the
spontaneous fluctuations to be determined from the time-dependent response-function and vice
versa.

The Langevin equation [1–3,12–19] (in its classical, generalised, and quantum forms) offers a
complementary approach which relates the response function directly to the fluctuating forces
that drive the position-fluctuations.

In this paper, we have adopted the Langevin equation as our starting point, since it enables
easy identification of all the forces coming into play. In applying it to the theoretical analysis of
the dynamics governing the motion of the cold atoms, we have treated the MOT as an interesting
example of an out of equilibrium system, and we have studied it from the point of view of
statistical physics, rather than from the viewpoint of cold atom experimenters for whom it serves
as a valuable and well-documented source of cold atoms. This type of analysis can be extended
to a variety of physical situations where one is interested in the motion of particles in a viscous
medium.

The paper is organised as follows: In Sec. 2, we briefly describe our experimental setup
and methods for preparation and detection of the cold atoms. Sec. 3 is devoted to the position
response function of the cold atomic cloud. In Sec. 3.1, we set up the theoretical perspective. In
Sec. 3.2, we describe our method for measuring the response function of the cold atoms, and in
Sec. 3.3, we compare the analytical results with the experimental observations. In Sec. 4, we
present some concluding remarks and future perspectives. There are two appendices. The first
supplements our treatment of the response function in the body of the paper. The second presents
our results on the spatial diffusion of the cold atoms.

2. Preparation and detection of cold atoms

Our experiment uses a cold atomic cloud of 87Rb atoms trapped in a MOT inside an ultra-high
vacuum (UHV) region (∼ 10−11 mbar) in a glass cell. A schematic diagram of the experimental
setup is shown in Fig. 1. The MOT is vapour-loaded from a Rb getter source. An external
cavity diode laser (ECDL) serves as the cooling laser, the laser beam being 12 MHz red-detuned
from the 5S1/2, F = 2 → 5P3/2, F′ = 3 (D2) transition of 87Rb. Another ECDL, the repump
laser, is tuned to the transition, 5S1/2, F = 1 → 5P3/2, F′ = 2, and used to optically pump the
atoms back into the cooling cycle. This is a standard procedure in laser cooling experiments.
The detuning and intensity of the cooling and repump beams are controlled by acousto-optic
modulators (AOM). The restoring force required to confine the cold atoms is provided by a pair
of current carrying coils in a near ideal anti-Helmholtz configuration.

The fiber coupled laser beams are expanded to have a Gaussian waist diameter of 10 mm
and combined in a non-polarizing cube beam splitter. Thereafter, the combined cooling and
repump beams are split into three pairs of beams using a combination of half-wave plates and
polarizing cube beam splitters. Each of the cooling beams is sent through the UHV glass cell
and retro-reflected via a quarter waveplate and a mirror. The incoming cooling beams are kept
slightly converging so as to account for the losses in the optical elements and to ensure that any
radiation-pressure imbalance between the incoming and the retro-reflected beam is eliminated.
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Fig. 1. Schematic diagram of the experimental setup where a cold atomic cloud is produced
in a MOT in a glass cell. A magnified view near the cold atomic cloud is shown in the inset.
The trajectory of the cold atomic cloud is shown as a series of atomic clouds at successive
positions in the XY plane. The cooling beams are retro-reflected using a mirror and a
quarter-wave plate. The cylindrical magnetic coils produce the quadrupole magnetic field
used for the MOT, and the square coils produce the homogeneous magnetic field used in
measuring the response function. The detection of the atomic cloud is done by means of
absorption imaging using an ICCD camera.

The cold atoms are detected by a time-of-flight absorption imaging technique, using a short
(∼ 100 µsec) pulse of weak, resonant linearly polarised laser light tuned to the 5S1/2, F = 2 →
5P3/2, F′ = 3 transition. The shadow cast by the atoms is imaged onto an ICCD camera with a
magnification factor of 0.4. In a typical run of the experiment, we trap and cool about 5 × 107

atoms at a temperature of around 150 µK.

3. Response function of the cold atoms

3.1. Langevin Equation

Our starting point is the Langevin Equation [20]. In its fully quantum mechanical form, it reads

Mẍ +
∫ t

−∞
dt′α(t − t′)ẋ(t′) + kx = ζ(t) + f (t) (1)

where M is the mass of the particle, α(t) is the dissipation kernel, and ζ(t) is the noise related to
the dissipation-kernel via the Fluctuation Dissipation Theorem (FDT) [12] as follows:

⟨ζ(t)⟩ =0

⟨{ζ(t), ζ(t′)}⟩ = 2
π

∫ ∞

0
dω ℏω coth

(︃
ℏω

2kBT

)︃
Re[α̃(ω)]cos(ω(t − t′))

. (2)

The position-operator, x(t), of the particle at any time t can be obtained by solving these
equations.
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The experiments reported here are at high enough temperatures that the noise can be treated
classically. We can therefore take the ℏ → 0 limit of the previous equation, to obtain the noise
correlators in their classical form:

⟨ζ(t)⟩ =0

⟨ζ(t)ζ(t′)⟩ = 2kBT
π

∫ ∞

0
dωRe[α̃(ω)]cos(ω(t − t′)). (3)

(This form of Langevin equation is sometimes termed “generalized” to indicate that the dissipation-
kernel is not restricted to being a delta-function.)

The last term on the left-hand side of Eq. (1) corresponds to a harmonic force characterized by
a spring constant k. In our present problem kx corresponds to the restoring force of the MOT. The
term f (t) on the right-hand side is a perturbing force, which in this experiment is an additional
magneto-optical force induced by the transient homogeneous magnetic field used to measure the
position-response function.

Taking the expectation value of Eq. (1), and substituting ⟨ζ(t)⟩ = 0, we obtain a deterministic
equation for ⟨x(t)⟩, whose Fourier transform is

−Mω2x̃(ω) − iωα̃(ω)x̃(ω) + kx̃(ω) = f̃ (ω) (4)

(here we have used x to denote the mean position of the particle.) Eq. (4) can be re-expressed as

x̃(ω) = R̃(ω)f̃ (ω) , (5)

where
R̃(ω) = 1

[−Mω2 − iωα + k] (6)

is the position response function of the particle (in this case the cold atomic cloud) in the
frequency domain.

Here we have set α̃(ω) = α, corresponding to the choice of an Ohmic bath to which the system
is coupled. This choice is motivated by the optical molasses in the cold-atom experimental
setup. In fact, an Ohmic bath is equivalent to a force proportional to the velocity with a fixed
coefficient of proportionality or damping coefficient. The present experiment serves as a test of
this theoretical model of the molasses.

The position response function in the time domain is given by:

R(t) = 1
2π

∫
R̃(ω)e−iωtdω. (7)

The position response function obtained thereby from Eq. (6) for the Ohmic bath is

R(t) = 2
αc

e−
αt
2M sinh

(︂ αct
2M

)︂
(8)

where αc =
√
α2 − 4kM..

There are three qualitatively distinct cases. For α2>4kM, αc is real and one gets an overdamped
motion of the cold atomic cloud. For α2 = 4kM, the motion of the cold atomic cloud is critically
damped, while for α2<4kM, αc is imaginary and the motion of the cold atomic cloud is a damped
oscillation. For k = 0, Eq. (8) reduces to the position response function used in [10]. (Note that
in the MOT, k is always non-zero due to the presence of the non-zero magnetic field gradient.)

In Sec 3.3, we will compare the analytically calculated motion of the cold atomic cloud that
follows from R(t) via Eq. (10) below with the experimentally observed oscillatory and damped
motions of the cloud.
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By taking a time derivative of R(t), one can also get the velocity response function,

Ṙ(t) = 1
αcM

e−
αt
2M

(︂
αccosh

(︂ αct
2M

)︂
− α sinh

(︂ αct
2M

)︂)︂
. (9)

It’s an interesting fact that the position response function R(t) can be inferred directly from the
mean velocity induced by a homogeneous force whose time-dependence is that of a step-function.
By definition, the mean displacement ⟨x(t)⟩ is related to R(t) by the equation,

⟨x(t)⟩ =
∫ t

−∞
R(t − t′)f (t′)dt′ (10)

(“linear response theory” [9,10]).
On differentiation, this gives the expectation value ⟨v(t)⟩ of the velocity:

⟨v(t)⟩ =
∫ t

−∞
Ṙ(t − t′)f (t′)dt′. (11)

Here f (t) is the external perturbing force, which in our experiment takes the form of a “top-hat
function”, f (t) = f0 θ(t + w) θ(−t):

f (t) =
{︄

f0, for − w<t<0
0, for t ≤ −w, t ≥ 0

. (12)

(In our experiment f (t) is induced by a bias field. The temporal profile of this field, together
with an analysis of how f (t) depends on it, is given in detail in Appendix A.1.)

Substituting into Eq. (11), we get:

⟨v(t)⟩ = f0
∫ 0

−w
Ṙ(t − t′)dt′ (13)

= −f0 (R(t) − R(t + w)) (14)

R(t) = − 1
f0
⟨v(t)⟩ + R(t + w). (15)

For w → ∞, R(t + w) → R(∞) = 0. (This assumes that the MOT is turned on. When it is
turned off and only the molasses is present, R(∞) will be non-zero.) Therefore we get

R(t) = − 1
f0
⟨v(t)⟩. (16)

This simple relationship means that one can measure the position response function directly,
simply by measuring the expectation value of the velocity.

3.2. Measurement of the position response function

The theoretical expression (8) for the position response function of the cold atoms contains two
unknown parameters, the damping-coefficient α and the spring constant k. In order to test the
theoretical model that leads to (8), and at the same time determine the values of the parameters α
and k, one needs to observe how the cloud of cold atoms moves in response to an external force.

In our experiment we apply a homogeneous magnetic field (bias field), and then follow the
motion of the cloud of cold atoms after the field is switched off. We first prepare the laser-cooled
87Rb atoms in a MOT as described in Sec 2. After that, we apply a homogeneous bias field, Bb.
This shifts the trap center to the zero of the new magnetic field. The cold atoms experience a
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force towards the new center, and equilibrate there within a short interval of time. After 5 sec, we
turn the bias field off, and the cold atoms return to the initial trap center, following a trajectory
from which the position response function can be inferred. To trace the trajectory, we record the
position of the cold atoms at regular intervals of time after turning off the bias field.

Fig. 2 is a schematic diagram of the sequence of events in the experiment. We capture and
cool the atoms in the MOT from a Rb getter source with a loading time of 15 sec. The cooling
beams, having a Gaussian cross-section with a waist size of 10 mm, are red-detuned by 2.2 Γ
from the 5S1/2, F = 2 → 5P3/2, F′ = 3 transition, where Γ = 38.11(6) × 106s−1 (2π × 6.065(9)
MHz) is the decay rate (natural line-width) of the 87Rb D2 transition. Different values of the
MOT magnetic field gradient were used in different sets of measurements. For the oscillatory
motion shown in Fig. 3, the gradient was 18 Gauss/cm; for the over-damped motion shown in
Fig. 4, it was 3.5 Gauss/cm.
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Fig. 2. Timing sequence for measuring the response function of the cold 87Rb atoms.
We prepare the cold atomic cloud by loading the MOT for 15 sec. Thereafter, we apply
a homogeneous bias magnetic field for 5 sec (𝑤). After the bias field is switched off,
the cooling beam detuning and intensity are changed by a variable amount in order
to explore a range of values of 𝛼. The ensuing motion of the cloud is monitored via
time-of-flight absorption imaging. In our experiment, time-of-flight(𝜏𝑡𝑜 𝑓 ) is 1.2 ms,
the detection gate time (𝑡𝑔) is 1 ms, and the pulse width of the imaging beam is 100 𝜇s.
The time separation between successive absorption images (𝑡𝑤) is 1 sec.
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Fig. 2. Timing sequence for measuring the response function of the cold 87Rb atoms.
We prepare the cold atomic cloud by loading the MOT for 15 sec. Thereafter, we apply
a homogeneous bias magnetic field for 5 sec (w). After the bias field is switched off, the
cooling beam detuning and intensity are changed by a variable amount in order to explore
a range of values of α. The ensuing motion of the cloud is monitored via time-of-flight
absorption imaging. In our experiment, time-of-flight(τtof ) is 1.2 ms, the detection gate
time (tg) is 1 ms, and the pulse width of the imaging beam is 100 µs. The time separation
between successive absorption images (tw) is 1 sec.

After the preparation stage, we apply the bias field for 5 seconds (its amplitude being 3 Gauss
for Fig. 3 and 0.6 Gauss for Fig. 4). Thereafter, we turn the bias field off and wait for a variable
time t, after which we switch off the quadrupole magnetic field and the cooling and repumper
laser beams simultaneously, and take an absorption image after allowing the cloud to move
ballistically for a time τtof = 1.2 ms. The mean position of the cold atomic cloud is inferred by
fitting a Gaussian to the column-density profile of the cloud.

3.3. Experimental results and comparisons with the theory

3.3.1. Motion of the cold atoms

In our experimental runs, we allow the cloud to move ballistically for a time τtof = 1.2 ms after
switching off the MOT light beams and the quadrupole field (the bias field having been switched
off earlier, of course). This delay lets us acquire the absorption image of the cloud in a magnetic
field-free environment.
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Fig. 3. Position of the cold atoms as a function of time after the homogeneous bias field
is switched off, illustrating the underdamped regime. Cooling beam detuning: −2.2 Γ,
total intensity: I = 16.91 Isat; MOT Magnetic field gradient: 18 G/cm; bias magnetic
field: 3 Gauss with its direction at an angle to the image plane. The solid line is the
best fit between the experimental data and the theoretical prediction from Eq. (26) with
α = (1.04 ± 0.04) × 10−22 kg/sec. Inset: A test fit of the data to Eq. (18) yielded an initial
estimate of α = (1.06 ± 0.24) × 10−22 kg/sec.
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Fig. 4. Position of the cold atoms as a function of time after the homogeneous bias field
is switched off, illustrating the overdamped regime. Detuning: −2.2 Γ, total intensity 𝐼:
9.73 𝐼𝑠𝑎𝑡 ; MOT Magnetic field gradient: 3.5 G/cm; bias magnetic field: 0.6 Gauss with
its direction along one of the Cartesian axes in the image plane. The solid line exhibits
the best fit between the data and Eq. (26) with 𝛼 = (1.57± 0.46) × 10−22 kg/sec. Inset:
A test fit to Eq. (18) yielded an initial estimate of 𝛼 = (1.58 ± 0.24) × 10−22 kg/sec.
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As discussed in Sec. 3.1, the cold atomic cloud shows an underdamped oscillatory motion or
an over-damped motion in response to the applied bias field depending on whether 𝛼2 < 4𝑘𝑀
or 𝛼2 > 4𝑘𝑀 respectively, i.e. whether the restoring force due to the magneto-optical trapping
overwhelms the viscous force due to the optical molasses or vice versa. As always, 𝛼 here
denotes the damping coefficient and 𝑘 the spring constant corresponding to the MOT. Both 𝛼

Fig. 4. Position of the cold atoms as a function of time after the homogeneous bias field
is switched off, illustrating the overdamped regime. Detuning: −2.2 Γ, total intensity I:
9.73 Isat; MOT Magnetic field gradient: 3.5 G/cm; bias magnetic field: 0.6 Gauss with its
direction along one of the Cartesian axes in the image plane. The solid line exhibits the best
fit between the data and Eq. (26) with α = (1.57 ± 0.46) × 10−22 kg/sec. Inset: A test fit to
Eq. (18) yielded an initial estimate of α = (1.58 ± 0.24) × 10−22 kg/sec.
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However, it introduces a small correction to the mean position of the cloud given by

⟨xobserved⟩ = ⟨x(t)⟩ + τtof ⟨v(t)⟩. (17)

The graphs in Fig. 3 and Fig. 4 show the time variation of ⟨xobserved⟩ after the bias field is
turned off. Each data point shown is the average of three experimental runs, and the error bar is
the standard deviation of the mean position, measured as described in Sec. 3.2.

In Fig. 3, we observe an underdamped oscillatory motion of the cold atomic cloud where the
MOT magnetic field gradient is 18 Gauss/cm and the magnitude of the bias field is 3 Gauss
along the x-direction as shown in Fig. 1. In Fig. 4, we observe an over-damped motion of the
cold atomic cloud where the MOT magnetic field gradient is 3.5 Gauss/cm and the magnitude of
the bias field is 0.6 Gauss along the x-direction.

The theoretical curves shown in Fig. 3 and Fig. 4, were obtained by fitting the experimental
data to the prediction Eq. (26) (with due regard to Eq. (17)). In these fits, there is only a single
fitting parameter: the damping coefficient α.

In the insets to Fig. 3 and Fig. 4, we have fitted the experimental data to the solution of a
damped-harmonic oscillator,

⟨x(t)⟩ = A e
(−α + αc)t

2M + B e
−(α + αc)t

2M (18)

without assuming anything further about the form of the position response function.
Here αc is defined as earlier, and M = 1.44316060(11) × 10−25 kg is the mass of the 87Rb atom.

The fitting parameters in this case were A, B, and α. From these fits, we obtained our initial
estimates of α.

By definition, both the models described by Eq. (26) and Eq. (18) agree that the motion of the
cloud after the perturbing force is switched off is that of a damped harmonic oscillator. However,
the simpler model based only on this fact yields no information on the Response Function, which
is the central concern of our paper. In Fig. 3, the statistical errors associated with the two models
(corresponding to Eq. (26) and Eq. (18), respectively) have been mentioned explicitly. They show
that the fuller, more predictive treatment which incorporates the form of the perturbing force
produces a better fit in the underdamped regime. (In the overdamped regime of Fig. 4, the two
models cannot be distinguished by our data.)

An approach based on a similar 3-parameter fit to the motion of an atom in a MOT was
presented in [11]. However, while being a correct approximation, it does not capture the details
of the external perturbing force in their entirety. In contrast, our approach based on the response
function can be used for any form of the perturbing force. Hence it offers a theoretical model
which is versatile and widely applicable for this class of experiments.

The experiments reported in [11] are performed in a totally different parameter regime
compared to parameter regimes of standard steady-state magneto-optical traps including the
ones reported in our manuscript. For example, the authors in [11] have used low cooling beam
intensities in the range of 0.1-0.6 mW/cm2. On the other hand, we have investigated the dynamics
of the atoms in a MOT with cooling beam intensities in the range 20 mW/cm2, which is typically
the intensities used for MOTs as a starting point of cold atom experiments.

As discussed in Sec. 3.1, the cold atomic cloud shows an underdamped oscillatory motion
or an over-damped motion in response to the applied bias field depending on whether α2<4kM
or α2>4kM respectively, i.e. whether the restoring force due to the magneto-optical trapping
overwhelms the viscous force due to the optical molasses or vice versa. As always, α here
denotes the damping coefficient and k the spring constant corresponding to the MOT. Both α and
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k can be calculated from 1D Doppler cooling theory [21,22] as,

α = 4ℏκ2 s0
2|δ |/Γ(︃

1 + 2 s0 +
4δ2

Γ2

)︃2 (19)

k = g
µBλ

h
α
∂Bm

∂x
(20)

where λ is the wavelength and κ = 2π/λ is the wavenumber of the cooling beams, δ is the

detuning of the cooling beams from the atomic transition, µB is the Bohr magneton,
∂Bm

∂x
is the

MOT magnetic field gradient and s0 is the saturation parameter of the cooling beams defined
as I/Isat where I is the total intensity of the cooling beams and Isat is the saturation intensity
(Isat = 1.6 mW/cm2 for 87Rb 5S1/2, F = 2 → 5P3/2, F′ = 3 transition and σ± polarised light).
Hence, the damping coefficient α depends on the detuning and intensity of the cooling beams
of the MOT, while the spring constant k has an additional dependence on the magnetic field
gradient.

Using the simplest possible assumption that the fluorescence from the trapped atoms accurately
gives the damping co-efficient in our fitting algorithm described above, we obtain a normalised
mean square residual of 8.2% and 5% for the data presented in Fig. 3 and Fig. 4 respectively.
However, in the presence of a gradient magnetic field in the MOT and for a Gaussian atom
number spatial distribution in the atomic cloud and a Gaussian spatial intensity profile of the
cooling laser beams, this simple assumption is likely to be inaccurate. Therefore, we kept α to be
a free fitting parameter and obtained a normalised mean square residual to be 2.1% and 2.6% for
the data presented in Fig. 3 and Fig. 4 respectively. This indicates that while the fluorescence
measurements can give a reasonable estimate of the damping coefficient of cold atoms in the MOT,
more accurate values of the damping coefficient can be found using experimental measurements
which is modelled well using our theoretical description presented in this paper.

3.3.2. Estimation of the damping coefficient (α) in the MOT

In Fig. 5, the damping coefficients (α) obtained from fitting the experimental data with the
analytical expression given in Eq. (26) and Eq. (30) are plotted against the light shifts, where the
light shift (∆) is given by:

∆ = ℏ |δ | I/Isat

1 + 4δ2/Γ2 (21)

where δ is the detuning of the cooling beam from the atomic transition and Γ is the natural
linewidth of the atomic transition having transition wavelength ≃ 780 nm. The data in Fig. 5
shows that the variation of the damping coefficient α with light shift in the MOT is rather slow
even though the MOT is operated in a wide range of intensity and detuning. Hence, it is possible
to present a consistent treatment of damping over a wide range of parameters following the
Langevin equations.

3.3.3. Position response function from velocity

In Fig. 6(a) and Fig. 6(b), we show comparisons between the theoretically obtained position
response functions given in Eq. (8) (solid lines) and the experimentally obtained scaled velocities
- 1

f0 ⟨v(t)⟩ (circle with error bars) for the motion of the atomic clouds given in Fig. 3 (oscillatory
motion) and Fig. 4 (damped motion). Note that the scaled velocity data agrees very well with the
curves for the response functions, confirming Eq. (16), which is indeed a very good approximation
to the exact response function (in other words, the top hat function approximates the exact bias
field and in turn the perturbing force well).
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As we vary the molasses parameters and the MOT’s magnetic field gradient in the experiment,
we observe both oscillatory and monotonic motions of the cloud’s centroid ⟨x(t)⟩, indicating a
transition from an underdamped to an over-damped regime. We did not attempt to explore all the
parameters (intensity, detuning, magnetic field gradient) in sufficient detail to pin down the exact
transition point between the two regimes. Nevertheless, in the reasonably large parameter space
that we have explored, the two regimes appear clearly, as does more generally the systematic
variation of the response function with the experimental parameters of the MOT.

Fig. 5. Damping coefficient (α) as a function of the light shift. MOT magnetic field gradient:
3.5 G/cm. The data was taken in the overdamped regime exemplified by Fig. 4.
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Fig. 6. Position response function deduced directly from velocity for (a) oscillatory motion
with α = (1.04±0.04)×10−22 kg/sec and (b) damped motion with α = (1.57±0.46)×10−22

kg/sec. In both the graphs, solid lines represent the theoretical prediction of R(t) given in
Eq. (8) and the shaded region shows the 68% confidence band. The experimental data points
correspond to the scaled velocities - 1

f0 ⟨v(t)⟩ of the cold atoms.
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4. Conclusion and outlook

In this work, we have measured the position response function of the cold atoms in a MOT by
subjecting them to a transient homogeneous magnetic field. We have tested theoretical predictions
regarding the nature of the response function, and we have done extensive theoretical analysis
and numerical modelling of our experimental observations.

One of the significant outcomes of the study has been the verification of the functional form
of the position response function which was used as input to a recent theoretical study [10] of
diffusion, not only in the classical domain dominated by thermal fluctuations, but also in the
still-to-be-explored quantum domain where zero-point fluctuations are the main driver of the
diffusion [23].

Our study has led to the experimental observation of a transition from an oscillatory to an
over-damped behaviour of the response function as a result of a competition between elastic and
dissipative effects. We find a good agreement between our experimental measurements and the
theoretical model of a particle moving in a viscous medium and confined by a harmonic-oscillator
potential. These measurements can be readily extended to lighter atomic species compared to Rb
such as Na and K so as to access a larger range of parameter space to observe a smooth transition
of the response function from an under-damped to an over-damped behaviour.

Our results demonstrate that a simple model (based on the Langevin equation) can describe
the dynamics of the atoms in a MOT without resorting to further approximations such as low
intensity regime in the Doppler theory, where the cooling light intensities are assumed to be
small. In the case of optimized operations in a MOT, the cooling light intensities are typically
well above the saturation intensity, and our model handles this regime successfully. In contrast,
many previous studies (including reference [11]) have considered only low intensity limit, and
consequently conducted their experiments in conditions of low-intensity cooling light.

In this work, our model allows us to extract microscopic quantities such as scattering rate
from measurements of the macroscopic response function. The knowledge extracted through
this study can be applied to multispecies traps, while additional damping due to inter-species
light-assisted collision-induced processes can be modelled in the near future. Such studies are
significant, because experiments with cold atom mixtures are currently a focus of many research
groups, and trap parameter optimizations beyond the low intensity Doppler regime are of interest.
Our generalized theoretical description is capable of handling this particular problem.

We also studied the spatial diffusion of the cold atoms in the optical molasses (Appendix B.),
observing a behaviour which is consistent with a theoretical model based on the Langevin
equation. In particular, the measured value of the diffusion coefficient agreed with the value
predicted by the Langevin model, using the damping coefficient deduced from our measurements
of the position response function at the same temperature.

One novelty of our theoretical analysis is the observation that the position response function
can be obtained directly from the velocity (Eq. (16)) if the temporal variation of the perturbing
force is a step function. This is confirmed by our experiment.

Our theoretical analysis also points out that in the MOT where the magnetic field is linearly
proportional to the distance from the centre, the magneto-optical force can be written as the
gradient of the square of the local magnitude of the magnetic field as shown in Eq. (23) of the
first Appendix. This relationship simplified the theoretical modelling of the perturbing force in
our experiment as seen in Eq. (24).

We would like to emphasise that the present work is a prelude to the study of diffusion
driven by zero-point quantum fluctuations. We have a theoretical prediction for the mean square
displacement in this domain, which can be verified in ultracold atom experiments for which the
knowledge of the position response function will be crucial. In the present experiment, we have
developed a technique to determine the response function empirically, and we have verified, in
the present regime, the form we had assumed in making the prediction.
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Our study provides a general framework to analyse the motion of a particle in optical molasses
combined with a restoring force, such as in a MOT, ion-traps in the presence of cooling laser
beams [24], or ultra-cold atoms in optical lattices in the presence of additional optical molasses
[25,26]. These and other similar experimental systems are of current interest in the context of
quantum technology devices [27]. This study paves the way for exploring spatial diffusion of
ultra-cold atoms in the quantum regime where zero-point fluctuations dominate over thermal
ones [9,10,28].

The central questions addressed in this paper are rooted in non-equilibrium statistical mechanics,
and the fact that we address them using the tools of cold atom physics, makes this study inherently
interdisciplinary in nature. In future, we intend to experimentally measure and analyse the
zero-point fluctuation driven diffusion in the quantum domain that has been predicted in [9,10].
In that context, we will expand our perspective beyond the classical Langevin Equation to a fully
quantum-mechanical formulation (quantum Langevin equation).

Appendix

A. Theoretical Modelling: Response function of the cold atoms

A.1. Perturbing force on cold atoms subjected to a transient homogeneous magnetic
field

The temporal profile of the bias field used in our experiments is shown in Fig. 7. We fit this
profile with the following equation:

Bb(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0 if t ≤ −w

= B0

(︄
1 − e−

t+w
τ1

)︄
if − w ≤ t ≤ 0

= B0

(︄
1 − e−

w
τ1

)︄
e−

t
τ2 ift ≥ 0

≃ B0 e−
t
τ2 (for w>>τ1)

(22)

where, B0 is the magnitude and w is the pulse width of the bias field, and where τ1 and τ2
are the rise time and fall time of the bias field. In our experiment, the values of τ1 and τ2 are
912 µs and 29.6 µs respectively. The approximation done in the last line of Eq. (22) is due to
the fact that the time duration of the bias field (w = 5 sec) is much larger than the 912 µs rise
time of the bias field. The exact values of τ1 and τ2 depend on the design details of the fast
switching circuit for the magnetic field coils in Helmholtz configuration producing the bias field
[29]. It is important to have a fast ‘switching off’ of the magnetic field so as to ensure that the
measurements taken after switching off the magnetic field are not significantly affected by the
time-constant τ2. In any case, we incorporate the effect of τ1 and τ2 on the motion of the atoms
in our theoretical model.

In a MOT, the x-component of the force on the cold atoms, which in [30] is expressed in terms
of x ∂Bm/∂x, can be recast as follows to show that the squared B-field acts like a potential energy
for the atoms:

FMOT = −αv − g
µBλ

h
α x
∂Bm

∂x

= −αv − g
µBλ

h
α

1
2Cm

∂B2
m
∂x

. (23)

Here, g = gF′mF′ − gFmF for transition between the hyperfine levels |F, mF⟩ and |F′, m′
F⟩, µB

is the Bohr magneton, λ is the wavelength of the cooling beams, h is the Planck’s constant, and α
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Fig. 7. Temporal profile of the bias field. The black solid line is the experimental data
recorded using a closed-loop current transducer using Hall effect (LA 150 – P, from LEM
USA Inc.) with a bandwidth of 150 kHz. Insets (a) and (b) show the growth and the decay,
respectively, of the bias field as a function of time. After fitting the data using Eq. (22) we
obtain τ1 = (912 ± 0.37) µs and τ2 = (29.6 ± 0.056) µs.

is the damping coefficient. In the second line we have used that Bm = Cmx with Cm a constant,
which implies that

x
∂Bm

∂x
=

Bm

Cm

∂Bm

∂x
=

1
2Cm

∂B2
m
∂x

.

In the presence of an additional bias field (Bb) along the negative x-direction, the force on an
atom is given by (2) with the bias field added to Bm:

Fnet = −αv − g
µBλ

h
α

1
2Cm

∂(Bm − Bb)2
∂x

= −αv − g
µBλ

h
α

1
2Cm

(︃
∂B2

m
∂x

− 2CmBb

)︃
= FMOT + f (t)

(24)

where we used that
∂Bb

∂x
= 0. Therefore

f (t) = g
µBλ

h
α Bb. (25)

A.2. Mean displacement of the cold atoms

Using the expression for the position response function in Eq. (8) and the perturbing force in
Eq. (25), we get

⟨x(t)⟩ = Ae
(−α + αc) t

2M + Be
− (α + αc) t

2M + Ce
−t
τ2 (26)



Research Article Vol. 1, No. 2 / 15 Feb 2022 / Optics Continuum 185

where,

A = − 2Mf0
αc

⎡⎢⎢⎢⎢⎢⎣
(︂
e

(−α+αc)w
2M − 1

)︂
α − αc

−
τ1

(︂
e

(−α+αc)w
2M − e

−w
τ1

)︂
ατ1 − 2M − αcτ1

+
τ2

(︂
1 − e

−w
τ1

)︂
ατ2 − 2M − αcτ2

⎤⎥⎥⎥⎥⎥⎦
(27)

B =
2Mf0
αc

⎡⎢⎢⎢⎢⎢⎣
(︂
e

−(α+αc)w
2M − 1

)︂
α + αc

−
τ1

(︂
e

−(α+αc)w
2M − e

−w
τ1

)︂
ατ1 − 2M + αcτ1

+
τ2

(︂
1 − e

−w
τ1

)︂
ατ2 − 2M + αcτ2

⎤⎥⎥⎥⎥⎥⎦
(28)

C =
4Mτ2

2 f0
(︂
1 − e

−w
τ1

)︂
(︁
4M2 + τ2

2 (α2 − α2
c ) − 4Mατ2

)︁ . (29)

Here, f0 = g
µBλ

h
α B0 from Eq. (25).

The last term of Eq. (26) comes from the form of the perturbing force which was employed in
our experiment. Its presence shows the advantage of using the fuller treatment over Eq. (18).
Our results confirm the more complete model.

The mean velocity can also be obtained by taking a time derivative of ⟨x(t)⟩ in Eq. (26),

⟨v(t)⟩ = (αc − α)A
2M

e
(−α + αc) t

2M − (α + αc)B
2M

e
− (α + αc) t

2M − C
τ2

e
−t
τ2

. (30)

Note that for negligible τ1, τ2 and for infinite width, i.e. w → ∞, using Eq. (27), Eq. (28) and
Eq. (29),

(αc − α)A
2M

→ − f0
αc

,
(α + αc)B

2M
→ − f0

αc
,

C
τ2

→ 0

then, using Eq. (30) ⟨v(t)⟩ → −f0R(t) (R(t) is given by Eq. (8)) and thus Eq. (16) is satisfied.

B. Spatial diffusion of cold atoms

We study the diffusive behaviour of the cold atoms in the viscous medium provided by our optical
molasses, exploring different temperatures as the atomic cloud is cooled to lower temperatures
via sub-Doppler cooling.

When the restoring force produced by the MOT magnetic field is absent, we are in the k = 0
regime of the Langevin equation which defines our theoretical model. We continue to assume
that the dissipation kernel α(t) is simply a delta-function in time, or equivalently that the force
exerted on an atom by the optical molasses is

FOM = −αv (31)

where v is the velocity of the atom. For consistency, one would hope that essentially the same
value of α would explain both the position response function studied above and the diffusive
spreading studied here.
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As is well known, the mean-square distance traveled by the diffusing atom can be determined
from the Langevin equation together with the noise-correlator, i.e. from Eqs. (1) and (3). The
predicted time-dependence of the spreading depends on how the observation time τ compares
with the “relaxation time” M/α. When τ ≫ M/α one finds the familiar Brownian motion, with
diffusion coefficient D given by the Stokes-Einstein-Smoluchowski relation:

D =
kBT
α

(32)

where kB is the Boltzmann constant and T is the temperature of the cloud. However, for τ ≪ M/α
one finds that the mean-square distance travelled grows like t3 rather than t. In our experiment,
the observation time of 20 ms is about 20 times bigger than M/α ∼ 1 ms. Although this is not
enormously greater than unity, it seems sufficiently large to enable us to ignore the short-time
crossover to t3 spreading. We have therefore fitted the data under the assumption that we are in
the regime of Brownian motion (Wiener process).

To observe the diffusive spreading of the atoms in the cold atomic cloud, we first loaded the
MOT from the background Rb vapour. Thereafter, the MOT magnetic field was switched off, and
the cloud was allowed to diffuse in the presence of the cooling laser beams forming the optical
molasses, but still in the absence of the MOT magnetic field.

In the Brownian motion approximation, an atomic cloud of initial size of (∆r)2
|︁|︁
t=0 expands to

a size of (∆r)2
|︁|︁
t=τ in time τ according to the relation:

(∆r)2
|︁|︁
t=τ = (∆r)2

|︁|︁
t=0 + 4 D τ, (33)

where, ∆r is the rms width of the cold atomic cloud.
We obtained (∆r)2 directly from the column density profile of the absorption image at time

t. In other similar experiments [31], the density profile was fitted to a Gaussian distribution,
whereas the (∆r)2 shown in Fig. 8 was obtained directly from the absorption images without
assuming Gaussianity. This additional generality could become important in the quantum regime
of logarithmic spreading, for which the analysis of [10] furnishes (∆r)2 but not the full probability
distribution of ∆r. (We know of no proof that the latter will be Gaussian when the diffusion is
not classical.)

Fig. 8. The plot shows the atomic cloud size expanding in an optical molasses at a
temperature of around 120µK . The solid line is a fit to the experimental data using Eq. (33) .

Eq. (32) relates the damping coefficient α to the diffusion coefficient D and thereby allows us
to check for consistency between our direct measurement of D (Fig. 8) and the value of the α
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deduced from our earlier measurements of the position response function. For a temperature of
around 120µK of the cold atomic cloud, the diffusion coefficient obtained from the measurement
of the diffusive spreading of the atomic cloud was (1.01 ± 0.15) × 10−5 m2/s yielding a value of
(1.58 ± 0.25) × 10−22 kg/s for α. For the same temperature, the value of α obtained from the
measurement of the position response function was (1.57 ± 0.46) × 10−22 kg/s. The agreement
could not be better.
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