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Abstract. We compute the density redshift-space power spectrum in
the presence of tangled magnetic fields and compare it with existing obser-
vations. Our analysis shows that if these magnetic fields originated in the
early universe then it is possible to construct models for which the shape
of the power spectrum agrees with the large scale slope of the observed
power spectrum. However requiring compatibility with observed CMBR
anisotropies, the normalization of the power spectrum is too low for mag-
netic fields to have significant impact on the large scale structure at present.
Magnetic fields of a more recent origin generically give density power
spectrum∝ k4 which doesn’t agree with the shape of the observed power
spectrum at any scale. Magnetic fields generate curl modes of the veloc-
ity field which increase both the quadrupole and hexadecapole of the red-
shift space power spectrum. For curl modes, the hexadecapole dominates
over quadrupole. So the presence of curl modes could be indicated by an
anomalously large hexadecapole, which has not yet been computed from
observation.

It appears difficult to construct models in which tangled magnetic fields
could have played a major role in shaping the large scale structure in the
present epoch. However if they did, one of the best ways to infer their
presence would be from the redshift space effects in the density power
spectrum.

Key words. Cosmology: theory—large-scale structure of the universe
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1. Introduction

Magnetic fields play an important dynamical role in shaping most structures in the
universe (see e.g., Parker 1979). The largest scale spatially coherent fields are seen
in galaxies and galaxy clusters with coherence lengths' 10–100 kpc (for a recent
review see Widrow 2002). Though there is also some evidence of coherent magnetic
fields on super-cluster scales (Kimet al. 1989), the existence of magnetic fields at
larger scales (>∼ 1 Mpc) cannot generally be inferred from direct observations (for a
summary of results see Kronberg 1994; Widrow 2002). The most direct method to
infer the presence of intergalactic magnetic fields forz <∼ 3 is to study the Faraday
rotation of polarized emission from extra-galactic sources (Rees & Reinhardt 1972;

51



52 Rajesh Gopal & Shiv K. Sethi

Kronberg & Simard-Normandin 1976; Vallée 1990; Blasi, Burles & Olinto 1999). The
existence of these fields can also be constrained at the last scattering surface from
CMBR anisotropy measurements and upper limits on the CMBR spectral distortion
(Barrow, Ferreira & Silk 1997; Subramanian & Barrow 1998; Jedamzik, Katalinić &
Olinto 2000). Large scale magnetic fields also cause Faraday rotation of the polarized
component of the CMBR anisotropies (Kosowsky & Loeb 1996). If magnetic fields
existed at even higher redshifts, they can also affect the primordial nucleosynthesis
(see e.g., Widrow 2002 for detailed discussion).

The origin of these large scale fields is not clear. They could arise from dynamo
amplification of small seed fields (see e.g., Parker 1979; Zeldovich, Ruzmaikin &
Sokolov 1983; Ruzmaikin, Sokolov & Shukurov 1988) or these fields have their origin
in very early universe and their flux-frozen evolution result in presently observed fields
(see e.g., Turner & Widrow 1988; Ratra 1992).

Wasserman (1978) considered the effect of large scale magnetic fields on the for-
mation of structures in the universe. This study showed that nano-gauss fields could
provide initial conditions for density and velocity perturbations which could gravita-
tionally collapse to form galaxies at the present epoch. Kim, Olinto & Rosner (1996)
calculated the density power spectrum in the presence of magnetic fields. Sethi (2003)
studied the effect of magnetic fields on the two-point correlation function of galaxies.

Two-point functions in real and Fourier space remain the most important tools
to understand the formation of structures in the universe (see e.g., Peebles 1980).
Recently large galaxy survey 2dF (Collesset al.2001) has computed these functions
with unprecedented precision. In particular one of the most important results from
the 2dF survey is the unambiguous detection of anisotropy in the two-point functions,
which is the best statistical evidence of the large scale velocity field (Peacocket al.
2001; Hawkinset al. 2002). The on-going survey Sloan digital sky survey (SDSS)
is likely to improve upon this result owing to its larger size (Yorket al. 2000). The
results of 2dF survey show good agreement with the theoretical predictions of variants
of CDM models (see e.g., Lahavet al. 2002), in which initial density perturbations
are produced at the time of inflation in the very early universe. Larger surveys like the
on-going SDSS have the potential to uncover the small discrepancy between theory
and observations.

In this paper we study the possibility that initial density and velocity perturbations
were caused by tangled magnetic fields. In particular we estimate the density power
spectrum in redshift space from these perturbations for two classes of models and
compare with present observations. In one class of models we assume the magnetic
fields to have originated in very early universe; we also consider simple models in
which the magnetic fields could be of more recent origin and could have originated by
astrophysical processes atz <∼ 10. This study could be considered a continuation of
the early studies of Kimet al. (1996) who calculated density power spectrum in real
space and Sethi (2003) who computed the density two-point correlation function in
redshift space.

In the next section we discuss the magneto-hydrodynamics equations and the evo-
lution of density and velocity fields in the presence of tangled magnetic fields. In
section 3 we discuss the properties of spatial correlations of the density and velocity
fields and their impact on redshift space power spectrum and give our main results. In
section 4 we summarize our conclusions. Throughout this paper we use the currently-
favoured background cosmological model: spatially flat with�m = 0.3 and�3 = 0.7
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(Perlmutteret al.1999; Riesset al.1998). For numerical work we use�bh
2 = 0.02

(Tytler et al.2000) andh = 0.7 (Freedmanet al.2001).

2. Magneto-hydrodynamics equations

In co-moving coordinates, the equations of magneto-hydrodynamics in the linearized
Newtonian theory are (Wasserman 1978):

d(avb)

dt
= −∇φ + (∇ × B) × B

4πρb

, (1)

∇ · vb = −aδ̇b, (2)

∇2φ = 4πGa2(ρDMδDM + ρbδb), (3)

∂(a2B)

∂t
= ∇ × (vb × a2B)

a
, (4)

∇ · B = 0. (5)

In equation (1) the pressure gradient from matter is neglected as it is important at
Jeans’ length scales (k � 1 Mpc−1 before re-ionization and' 1 Mpc−1 after re-
ionization). Our interest here is to study scales at which the perturbations are linear at
the present epoch,>∼ 10 h−1 Mpc ork <∼ 0.2 h Mpc−1. Equation (1) and equation (2)
can be combined to give:

∂2δb

∂t2
+ 2

ȧ

a

∂δb

∂t
− 4πG(ρDMδDM + ρbδb) = ∇. [(∇ × B) × B]

4πa2ρb

. (6)

Here the subscript ‘b’ refers to the baryonic component and the subscript ‘DM’ refers
to the dark matter component. Fluid equations for the evolution of dark matter per-
turbations can be obtained from the equations above by dropping the magnetic field
terms (Peebles 1980). Wasserman (1978) showed that equation (6) admits a grow-
ing solution, i.e., tangled magnetic fields can provide initial conditions for the growth
of density perturbations. These solutions are discussed in the next section. In equa-
tion (4) we have assumed the medium to have infinite conductivity. It can be simplified
further by dropping the right hand side of the equation as it is of higher order, this
gives:

B(x, t)a2 = constant. (7)

We assume the tangled magnetic field to be a statistically homogeneous and isotropic
vector random process. In this case the two-point correlation function of the field in
Fourier space can be expressed as (Landau & Lifshitz 1987):

〈Bi(q)B∗
j (k)〉 = δ3

D(q − k)
(
δij − qiqj/q

2
)
B2(q). (8)

In addition we assume the tangled magnetic fields to obey Gaussian statistics.
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2.1 Time evolution of density and velocity perturbations

The space and time dependence in the solution of equation (6) can be separated. Equa-
tion (6) contains two source terms: dark matter perturbations and tangled magnetic
fields. A similar equation for the dark matter perturbations contains baryonic pertur-
bations as the source term.

∂2δb

∂t2
= −2

ȧ

a

∂δb

∂t
+ 4πG(ρDMδDM + ρbδb) + S(t, x),

∂2δDM

∂t2
= −2

ȧ

a

∂δDM

∂t
+ 4πG(ρDMδDM + ρbδb). (9)

HereS(t, x) is the source term from magnetic fields. The dark matter is not directly
affected by the magnetic fields. To solve these equations, we defineδm = (ρDMδDM +
ρbδb)/ρm with ρm = (ρDM + ρb). This leads to:

∂2δb

∂t2
= −2

ȧ

a

∂δb

∂t
+ 4πGρmδm + S(t, x),

∂2δm

∂t2
= −2

ȧ

a

∂δm

∂t
+ 4πGρmδm + ρb

ρm

S(t, x). (10)

The second of these equations can be solved by the usual Green’s function methods.
Its solution is:

δm(x, t) = A(x)D1(t) + B(x)D2(t) − D1(t)

∫ t

ti

dt ′
S(t ′, x)D2(t

′)
W(t ′)

+ D2(t)

∫ t

ti

dt ′
S(t ′, x)D1(t

′)
W(t ′)

. (11)

HereW(t) = D1(t)Ḋ2(t) − D2(t)Ḋ1(t) is the Wronskian.D1(t) andD2(t) are the
solutions of the homogeneous part of theδm evolution (Peebles 1980). These terms
have the space dependence corresponding to initial, presumably originated during
inflation, perturbations. There is no reason to expect that there will be any correla-
tion between these perturbations and the tangled magnetic field-induced perturbations.
And therefore in the two-point functions these two contributions will add in quadra-
ture. We only consider magnetic field-induced perturbations for our analysis and drop
the first two terms from equation (11). In equation (11),ti corresponds to the epoch of
recombination as compressional modes cannot grow before that epoch (see e.g., Subra-
manian & Barrow 1998). So our initial conditions are:δ(ti) = δ̇(ti), as is evident from
equation (11). The solution to equation (11) can be readily calculated analytically for
�m = 1 universe (Wasserman 1978). For the currently favoured cosmological model
– spatially flat with non-zero cosmological constant – these solutions have to be found
numerically. The evolution ofδb can be solved from:

1

a2

∂

∂t

(
a2∂δb

∂t

)
= 3

2
H 2δm + S(t, x). (12)
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Here we have used:H 2 = (8πG/3)ρm. At high redshifts, solutions to equation (12)
can be found analytically and allow us some insight into the numerical solutions. For
z � 1 the fastest growing solution of equation (12) is∝ �b/�2

mt2/3. It shows that in
the presence of the dark matter, perturbations in baryonic matter are suppressed by a
factor�b/�2

m.
Tangled magnetic fields give rise to both compressional and curl velocity fields.

The time dependence of these two modes is different. The time dependence of the
compressional velocity modevd can be found from the continuity equation (equa-
tion 2) and equation (11). For�m = 1 model, the compressional modes grow asa1/2.
In the presence of dark matter, their growth like the density mode is suppressed by a
factor�b/�2

m.
The time evolution of the curl part of the velocity can be found by either taking the

curl of equation (1) or in Fourier space project the transverse part of the velocity field
(see below). The time dependence of the resulting equation is readily solved:

vc(t) = a(t)−1
∫ t

ti

dt ′

a−3(t ′)
S(t ′, x) (13)

vc doesn’t have any growing mode. In the�m = 1 modelvc ∝ a−1/2. Unlike the
density and compressional velocity modes it doesn’t suffer any suppression in the
presence of dark matter.

The time evolution of density and velocity fields is shown in Fig. 1. In case the
tangled magnetic fields originated in the very early universe, the effect of the non-

Figure 1. Evolution of density and velocity fields is shown if the tangled magnetic fields existed
at the last scattering surface.
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compressional modes generated by the magnetic fields would be negligible on the
large scale structure at the present epoch, as these modes would have decayed by the
present. Only if the magnetic fields are of more recent origin, these modes could have
played an important part in the dynamics of large scale structure.

3. Density and velocity fields

The density and velocity fields are statistically homogeneous and isotropic random
processes in real space. This allows one to define the power spectrum of the density
field, P(k), as (see e.g., Peebles 1980):

〈δ(k)δ(k′)〉 = (2π)3P(k)δ3
D(k + k′). (14)

In redshift space both statistical homogeneity and isotropy of the density field break
down (see e.g., Hamilton 1998). In the plane parallel approximation (Kaiser 1987), the
density field is only statistically anisotropic. This is generally a good assumption in
analysing large scale data (Hamilton 1998). We make this assumption in our analysis
here. In linear theory and in the plane parallel approximation the observed density
field, i.e., the redshift space density field,δs(r) can be written in terms of the real space
density and velocity field as:

δs(r , t) = δ(r , t) − ẑ.∇ẑ.vb(r , t). (15)

Here ẑ is taken to be the common line of sight to all the objects. In Fourier space
equation (15) can be written as:

δs(k, t) = δ(k, t) + ikzvz(k, t). (16)

Herekz = ẑ.k andvz = ẑ.vb. The velocity field in the case of tangled magnetic fields
has both a divergence and a curl component.

vb = vd + vc. (17)

Herevd andvc are the divergence and curl part of the velocity field. Their time evolution
is already discussed in the last section. In Fourier space the divergence component
points in the direction of thek vector, therefore it is convenient to decompose the
velocity field parallel and perpendicular to thek vector, this gives the velocity field in
the Fourier space as:

vd(k) = k̂k̂.v(k), (18)

vc(k) = v(k) − k̂k̂.v(k), (19)

vd can readily be solved in terms of the density field using the continuity equation
(equation 2):

ẑ.vd(k) ≡ vdz = − iµ

k
δ(k)g1(t). (20)
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Hereµ = kz/k is the angle between the Fourier mode and the line of sight andg1(t) is
the time dependence of the divergence part of the velocity field; it is shown in Fig. 1.
Note that we use the same symbols for density and velocity fields in both real and
Fourier space. The curl part of the velocity field in the Fourier space is projected out
by multiplying the Euler equation (equation 1) byδij − k̂i k̂j , δij being the Kronecker
delta function. The time dependence of the curl modeg2(t) is given in equation (13)
and shown in Fig. 1.

From equation (14) the redshift space power spectrum can be written as:

(2π)3Ps(k, t)δ3
D(k + k′) = 〈(δ(k, t) + ikzvz(k, t))(δ(k′, t) + ik′

zvz(k′, t))〉. (21)

This can be expanded as:

Ps(k, t) = P(k)f 2(t) − g1(t)k
2
z 〈vdz(k)vdz(−k)〉 + ig1(t)f (t)kz〈δ(k)vdz(−k)〉

+ ig1(t)f (t)kz〈δ(−k)vdz(k)〉 − ig2(t)f (t)kz〈δ(k)vcz(−k)〉
+ ig2(t)f (t)kz〈δ(−k)vcz(k)〉 + g2

2(t)k
2
z 〈vcz(k)vcz(−k)〉

+ k2
z g1(t)g2(t)〈vdz(k)vcz(−k)〉 − k2

z g1(t)g2(t)〈vdz(−k)vcz(k)〉. (22)

HereP(k) = 〈δ(k)δ(−k)〉 is the real space power spectrum. It is derived in Appendix
A. f (t) gives the evolution of density perturbations (equation (11) and Fig. 1). The
correlations involving the divergence part of the velocity fields can be readily written
using the continuity equation (equation 2):

〈δ(−k)vdz(k)〉 = −i
kz

k2
P(k),

〈vdz(k)vdz(−k)〉 = −k2
z

k4
P(k). (23)

Equation (23) along with the first four terms of equation (22) give the usual formula
of redshift-distortion first derived by Kaiser (1987):Ps(k) = (1+ µ2β)2P(k), where
β = g1(t0)/f (t0) ' �0.6

m (Lahav et al. 1991). Analysis of 2dF data suggests that
β ' 0.4 (Peacocket al. 2001). Tangled magnetic fields also generate curl modes,
which give rise to additional terms in the power spectrum in redshift space. We show
in Appendix A that:

〈δ(−k)vcz(k)〉 = 0,

〈vdz(k)vcz(−k)〉 = 0. (24)

The non-trivial contribution comes from the term:〈vcz(k)vcz(−k)〉. This can be written
as:

〈vcz(k)vcz(−k)〉 = 〈vz(−k)vz(k)〉 − k2
z

k4
P(k) + i

kz

k2
〈vz(k)δ(−k)〉 − i

kz

k2
〈vz(−k)δ(k)〉.

(25)
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In Appendix A we show that,〈vz(k)δ(−k)〉 = −ikz/k2P(k). This simplifies the
equation to:

〈vcz(k)vcz(−k)〉 = 〈vz(−k)vz(k)〉 + 3
k2
z

k4
P(k). (26)

The term〈vz(−k)vz(k)〉 cannot be written in terms ofP(k). As shown in Appendix A,
it contributes two positive terms proportional toµ2 (quadrupole) andµ4 (hexade-
capole) with magnitude comparable toP(k) (equation 43). This information along
with equation (26) allows us to assess the contribution of the curl component of the
velocity field to the redshift space distortion. Its contribution at the present epoch is
proportional tog2

2(t0). If the magnetic fields originated in the very early universe then
the contribution of the curl component of the velocity field is negligible as it doesn’t
have any growing mode. From Fig. 1, we can see thatg2(t0)/g1(t0) � 1. However
if the magnetic fields have their origin in the recent history of the universe then it is
possible to haveg2(t0) ' g1(t0). In this case the curl component enhances the contri-
bution in bothµ2 andµ4 terms. It is interesting to note that unlike the divergence term
in which theµ4 term is smaller than theµ2 term by a factor ofβ/2, the curl contribu-
tion is dominated by theµ4 term. In many models we studied it can be nearly 5 times
theµ2 term. The presence of the curl component leads to the intriguing possibility that
the observed redshift space distortion is dominated by the curl mode. In that case it is
not possible to infer the value ofβ from this observation as is usually done (Hamilton
et al. 2001; Peacock 1998). We illustrate this case in Fig. 2. More realistically how-
ever the effect of the curl term might be determined from simultaneously determining
the contributions from both theµ2 andµ4 terms. It has not so far been possible from
observations which have determined only theµ2 part (Peacocket al.2001). On-going
survey SDSS galaxy survey has the potential to test this hypothesis. These redshift
space effects are nearly independent of the power spectrum of the tangled magnetic
field. We discuss below whether it is possible to construct viable models of density
power spectrum from the tangled magnetic field.

For our calculations we take the magnetic field power spectrum to be power law:

B2(k) = Akn. (27)

We consider the range ofk betweenkmin, which is taken to be zero unless specified
otherwise, and the approximate scale at which the Alfv́en waves damp in the pre-
recombination era (Jedamzik, Katalinic & Olinto 1998; Subramanian & Barrow 1998).
Following Jedamziket al. (1998),kmax ' 60 Mpc−1(B0/(3 × 10−9 G). B0, the RMS
of magnetic field fluctuations at the present epoch, is defined as:

B2
0 ≡ 〈Bi(x, t0)Bi(x, t0)〉 = 1

π2

∫ kc

0
dkk2B2(k). (28)

Herekc = 1h Mpc−1 (Subramanian & Barrow 2002). This gives:

A = π2(3 + n)

k
(3+n)
c

B2
0. (29)
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Figure 2. Equal redshift space power spectrum contours are shown. Thex- andy-axis cor-
respond to the component ofk vector parallel and perpendicular to the line of sight. The solid
contours show the contours forβ = 0.4, to match with observations (Peacocket al.2001), with
zero curl contribution. The dashed curves correspond toβ = 0 with curl component normalized
to give the same quadrupole as in the previous case. Note strong distortions of the curves from
the dominant hexadecapole in this case. The contour levels and overall normalization is arbitrary.

3.1 Power spectrum in real space

In the previous subsection, we discussed the redshift space effects in the observed
power spectrum. Such effects are nearly independent of the power spectrum of the
tangled magnetic field. In this section we study the possibility of constructing viable
models of density power spectrum from tangled magnetic fields.

It is conceivable that tangled magnetic fields originated in the very early universe
during inflationary epoch (Turner & Widrow 1988; Ratra 1992). In this case tangled
magnetic fields can have large coherence lengths, orkmin ' 0 in equation (27). On
the other hand magnetic fields could be of more recent origin (z <∼ 10). However,
recent astrophysical processes do not generate large scale magnetic fields. Quasar
outflows (see e.g., Furlanetto & Loeb 2001) might pollute the intergalactic medium
sufficiently for it to have magnetic fields with maximum coherence scales' 2 Mpc
with magnitudes' 10−9 G. In both cases magnetic fields can have appreciable effect
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on the large scale structure in the universe at linear scales. We discuss both these
possibilities below.

3.1.1 Early universe magnetic fields

Kim, Olinto & Rosner (1996) calculated the density power spectrum in the presence of
tangled magnetic fields. They concluded that for magnetic field power spectrum index
4 < n < −1, the density power spectrum scales ask4. We confirm their result but
also consider smaller values ofn. The observed power spectrum (Spergelet al.2003)
is consistent withP(k) ∝ k at large scales (k <∼ 0.002); at smaller scalesP(k) turns
around and scales askp with p changing from 0 to−3 as the scales become smaller (see
e.g., Efstathiouet al.1996; Percivalet al.2001; Fig. 3). This clearly means that none of
the magnetic field power spectrum indexn studied by Kimet al.(1996) can explain the
data, which they also pointed out. To make atleast the slope ofP(k) agree with the large
scale structure data, one needs to consider smaller value ofn. Forn = −2,P(k) ∝ k3,
for n <∼ − 2.5, the power spectrum turns even shallower. An analytical understanding
of this behaviour is given in Appendix A (equation 37). We considern = −2.9, also
studied by Subramanian & Barrow (2002); for this valueP(k) scales approximately
ask. This suggests that the parameter range of interest lies around this value. As we

Figure 3. The density power spectrum from tangled magnetic fields is shown along with recent
observation of the power spectrum from 2dF galaxy survey (Percivalet al.2001) and a variant
of CDM model. For all the curvesB0 = 3 × 10−9 G. The curves correspond to different values
of n: n = 0 (solid line),n = −1 (dashed line),n = −2 (dot-dashed line), andn = −2.9 (dotted
line). The thick solid line corresponds to CDM model for a spatially flat universe:�m = 0.3,
�3 = 0.7, �b = 0.04.
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discussed above that redshift space effects do not change this conclusion. Subramanian
& Barrow (2002) showed that this model can lead to CMBR anisotropies' 10µk for
angular scales 1000< ` < 2000 forB0 = 3 × 10−9, G, which is comparable to the
observed anisotropies at these scales (Masonet al.2002). We check if this model, with
this normalization, can give reasonable effect on the large scale structure at the present
epoch. We plot in Fig. 3 the density power spectra for several values ofn. The power
spectrum for this model is nearly two orders of magnitude below the observed power
spectrum at linear scales. Therefore, even though this model leads to the correct shape
of power spectrum at large scales, the normalization needed to give the correct CMBR
anisotropy level is too low. We should point out that this result is nearly independent
of the upper cut-offkmax of the magnetic field power spectrum. Fig. 3 also shows that
spectral indicesn >∼ −1 are ruled out by the present data forB0 = 3×10−9 G. However
the results for models withn >∼ − 1.5 are strongly dependent onkmax and therefore
less reliable and they are also likely to give unacceptably large CMBR anisotropies.
Therefore we are led to conclude that if tangled magnetic fields existed at the last
scattering surface, they are unlikely to have much impact on the large scale structure in
the universe at present at linear scales. It should however be noted from Figure 3 that
magnetic fields can have significant effect on the non-linear scales; which in particular
will lead to early collapse of structures. This may have important implications for
the re-ionization of the universe (Sethi & Subramanian 2003). We do not discuss this
scenario in detail in this paper.

3.1.2 Low redshift magnetic fields

We consider a simple model to assess the effect of low redshift magnetic fields on
the large scale structure. We assume these fields were created in the post-reionization
epochz <∼ 15 (Spergelet al.2003) andkmin = 6h Mpc−1 andkmax = 30h Mpc−1, this
corresponds roughly to scales between 1 h−1Mpc and 200 h−1kpc. The slope of the
magnetic field power spectrum and its strength is to be determined by observations.
While our choice ofkmin is motivated by the requirement that astrophysical processes
are unlikely to generate larger scale magnetic fields, our choice ofkmax is largely
arbitrary. Our interest is in studying the effect of these fields at scales that are linear
at present, i.e.,k <∼ 0.2 Mpc. We show in Appendix A (equation (38) that models in
which k � kmin generically give density power spectrum∝ k4, irrespective of the
slope of the tangled magnetic field power spectrumn. Forn >∼ −1.5, the density power
spectrum is dominated by the upper cut-offkmax; in the other limitkmin determines the
amplitude of the power spectrum. In Fig. 4, we show the power spectrum for two values
of n for B0 = 10−9 G. For simplicity we takef (t0) = 5. It is seen that ifn >∼ 1 the
density power spectrum at linear scales can get appreciable contribution from tangled
magnetic fields. However results for these spectral indices depend strongly on the
upper cut-offkmax and therefore are less reliable. Note that the value ofB0 needed to
cause sufficient effect on the large scale structure is quite different from Sethi (2003).
This is owing to the fact thatkmax was taken to be 1 h Mpc−1 in that work and fields
were assumed to be locally generated, i.e.,f (t0) = 1.

A possible criticism of our analysis is the use of linear theory and neglect of the RHS
of equation (4). Even though we are interested in density perturbations at linear scales at
present, presence of the RHS of equation (4) mixes all modes of tangled magnetic fields
and the velocity perturbations and in general cannot be neglected. Our preliminary
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Figure 4. Same as Figure 3 for the model in which the tangled magnetic fields originate at
z <∼ 10 (see text for detail).B0 = 10−9 G and the curves correspond to different spectral index
values:n = 2 (Solid line),n = 1 (dashed line).

calculations show that these terms are of orderk times the velocity and magnetic field,
which means that back reaction of velocity perturbations on the magnetic fields is of
higher order than the density power spectrum and could be dropped for studying linear
scales. We plan to study this issue in more detail in future. In particular these terms
can be neglected if the density perturbationδ(k) is negligible for all scales in question.
The smallest scale at which perturbations can collapse is the magnetic Jeans length
' 100 kpc(B0/(10−9 G)) (Subramanian & Barrow 1998). In practice it is however
seen that neglect of non-linear terms to study perturbations at linear scales holds for
a wide range of linear scales. For example the use of linear theory in the usual CDM
model gives reasonable results for studying perturbations fork <∼ 0.2 h−1Mpc which
are quasi-linear at present, even though smaller structures could have collapsed at much
higher redshifts. One case in which we are justified in neglecting the non-linear terms
is when the final result can be shown to be nearly independent of the contribution of
largek modes of the magnetic field. This as we discussed above is valid forn <∼ −1.5
if the magnetic fields are generated in the early universe. In other cases neglect of this
term should depend on bothB0 andn. Therefore our results on the effect of magnetic
fields generated at low redshifts should be considered preliminary.

4. Conclusions

In this paper we studied the effect of tangled magnetic fields on the large scale
structure in the universe. We calculated the power spectrum of the tangled magnetic
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fields and compared it with the observations at the present epoch. Our results can be
summarized as:

• If the magnetic field originated in the very early universe. It is possible to construct
models in which the shape of density power spectrum∝ k, i.e., it agrees with the
observed power spectrum shape fork <∼ 0.02 h−1 Mpc−1. However compatibility
with observed CMBR anisotropies suggests that the density power spectrum from
tangled magnetic field is smaller than the observed power spectrum by atleast two
orders of magnitudes at linear scales (k <∼ 0.2 h−1 Mpc−1) at present. Therefore
very early universe tangled magnetic fields are unlikely to have important impact
on the structures in the present universe.

• We consider a simple model in which the magnetic fields were generated with
coherence scalesk >∼ 2 h−1 Mpc−1 in the post-reionization epochz <∼ 10. In all
such models the density power spectrum∝ k4, i.e., the shape of the power spec-
trum is incompatible with the shape of the observed shape. It is possible to con-
struct models in which the magnetic field can have important contribution to the
density power spectrum forB0 ' 10−9 G. (It should be noted that the density
power spectrum from initial conditions which could have originated during infla-
tion adds to the magnetic field-induced density power spectrum as the density
fields generated by these two processes are uncorrelated; see equation (11) and
the discussion following it.) However these results are quite sensitive to the shape
and the upperk cut-off of the tangled magnetic fields power spectrum, which are
difficult to fix from either observations or theory.

• The redshift space effects from tangled magnetic fields have additional features
owing to curl component of velocities generated by these fields. The curl com-
ponent increases both the quadrupole (µ2 term), hexadecapole (µ4 term) of the
redshift space power spectrum. For very early universe magnetic fields the curl
component decays so it cannot have important contribution to the redshift space
effects. For magnetic fields generated in the more recent epoch, the curl compo-
nent of the velocity field can be comparable to the divergence component. In this
case both quadropole and hexadecapole can be dominated by the curl component
as opposed to the usual case of divergence collapse. This leads to the interesting
possibility that most of the redshift space effects come from the curl compo-
nent, and the usual way of determining�m from the redshift space distortion is
not entirely valid (Peacocket al.2001). As noted above the density power spec-
trum from tangled magnetic fields can dominate the observed power spectrum for
B0 ' 10−9 G, and hence can be used to probe tangled fields which are too small
to be detected by other methods (see e.g., Sethi 2003)

In summary: Tangled magnetic fields are unlikely to have provided the initial
conditions for the formation of presently-observed structure in the universe. In this
paper we showed that this conclusion seems inevitable for magnetic fields generated
in the very early universe. However we could only study a simple model of tangled
magnetic fields which were generated atz <∼ 10. It would be interesting to do a more
detailed analysis of this scenario taking into account the non-linear effects.
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APPENDIX A

In this Appendix, we derive expressions forP(k), 〈δ(k)vz(k)〉, 〈(vz(k))2〉 and also
make an approximate analytical estimate of the smallk-dependence ofP(k). The real
space spatial density contrast and peculiar velocity component along the line of sight
are given as:

δ(x) = ∇ · [B × (∇ × B)],

v(x) · ẑ = [B × (∇ × B)] · ẑ. (30)

HereB ≡ B(x, t0), i.e., the value of magnetic field at the present epoch. The Fourier
space expressions for the above fields are:

δ(k) =
∫

d3k1[(k1 · B(k − k1)) (k · B(k1)) − (k1 · k) (B(k1) · B(k − k1))], (31)

v(k) = −i

∫
d3k1[(B(k1) · B(k − k1))k1 − (k1 · B(k − k1))B(k1)]. (32)

The volume element in the integrals can be simplified by choosingk to lie along the
z-axis andn̂ to lie in thex-z plane. We thus have,

∫
d3k1 =

∫
dk1k

2
1

∫
dµ

∫
dφ. (33)

Here,µ ≡ cos θ (θ is the angle betweenk1 and thez-axis) whileφ is the azimuthal
angle. In the integral,k1 ranges fromkmin to kmax, µ from −1 to +1 andφ from 0 to
2π . Care has to be taken while evaluating multiple integrals formed from above (for
e.g.,〈δ2〉) since the presence of terms likeδ(k2 + k − k1) after integrating overk2 puts
a constraint on the integration range ofθ as well. Taking all this into account we can
split the integration ranges for the cases of interest in this paper as follows:

Forkmin = 0 and 0< k1 < kmax,

∫
d3k1 =

∫ k

0
dk1

∫ +1

−1
dµ +

∫ kmax−k

k

dk1

∫ +1

−1
dµ +

∫ kmax

kmax−k

dk1

∫ 1

µmax

dµ. (34)

Forkmin 6= 0 and 0< k1 < kmin,

∫
d3k1 =

∫ k+kmin

kmin

dk1

∫ µmin

−1
dµ +

∫ kmax−k

k+kmin

dk1

∫ +1

−1
dµ +

∫ kmax

kmax−k

dk1

∫ 1

µmax

dµ,

(35)

whereµmax = (k2 + k2
1 − k2

max)/(2kk1) andµmin = (k2 + k2
1 − k2

min)/(2kk1).
To calculateP(k) we take the ensemble average of [δ(k)]2. This product contains

terms involving four point functions ofB. By assuming thatB is Gaussian distributed
in the ensembles such terms can be written as sums of products of two-point functions
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of B. Finally using equation (8) and simplifying, we arrive at the following expression
for P(k):

P(k)=
∫ kmax

kmin

dk1

∫ +1

−1
dµ

B2(k1)B
2(|k − k1|)

|k − k1|2
[2k5k3

1µ + k4k4
1(1−5µ2) + 2k3k5

1µ
3].

(36)

We evaluate this double integral numerically. However we can analytically see the
form for P(k) whenk � kmax both forkmin = 0 as well askmin 6= 0 as follows:

For kmin = 0 andk � kmax, the relevant case when the magnetic fields originate
in the early universe, the only major contribution to theP(k) comes from the second
integral in equation (34). We thus have to lowest order ink/kmax,

P(k) ∼ Ak2n+7 + Bk2n+3
max k4 + Ck2n+1

max k6 + ...(higher powers ofk) (37)

where,A, B andC are coefficients depending only onn. We thus see that forn > −1.5
the leading order term is proportional tok4 whereas forn < −1.5 it is proportional
to k2n+7. In particular forn = −2, the dependence goes ask3. Also, P(k) → k1 as
n → −3.

Forkmin 6= 0 andk � kmin, the case if the magnetic fields are of more recent origin,
the leading contribution toP(k) comes from the third integral in equation (35). Thus,
to lowest order ink we get,

P(k) ∼ Ak4(k2n+3
max − k2n+3

min ) + ...(higher powers ofk). (38)

Thus, we see that with an infrared cutoff which is much larger than the wavenumber
of interest, the dependence ofP(k) is genericallyk4. The dependence onkmax and
kmin is such that forn > −1.5, the value ofP(k) is determined by and increases with
kmax. In the other limitP(k) is determined bykmin. We now evaluate the correlation
〈δ(k) v · ẑ〉 We can show that it is simply proportional toP(k) in the following way:
From the assumptions of homogeneity and isotropy, we can write

〈vi(k)vj (q)〉 = (
A(k2) δij + B(k2) kikj

)
δ3(q − k) (39)

whereA(k2) andB(k2) are some as yet undetermined coefficients. Thus, using the
continuity equation (equation 2):

〈δ(k) v(k) · n̂〉 = −i〈kivivjnj 〉 = −ik · n̂[A(k2) + k2B(k2)]. (40)

Similarly we get,

P(k) ≡ −〈kivikjvj 〉 = −k2[A(k2) + k2B(k2)]. (41)
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Thus from these equations we get the following relation:

〈δ(k) v(k) · n̂〉 = i
k · n̂
k2

P(k). (42)

From this derivation equation (24) follows. Finally, this allows us to write〈(v(k) · n̂)2〉
correlation:

〈(v(k) · n̂)2〉 =
∫ kmax

kmin

dq

∫ +1

−1
dµ

B2(q)B2(|k − q|)
|k − q|2

[
cos2 α

(
2k3q3µ − 5k2q4µ2

+ k2q4 − q5k(µ − 3µ3)
) + q5k(µ − µ3)

]
. (43)

Here,α is the angle betweenk andn̂.
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