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Synopsis

Liquid crystalline materials are known to exhibit orientational order in their fluid

phases due to the anisotropy of the constituent molecules. These ordered fluid phases

are the intermediate states between the crystal phase with both translational and

orientational order in three dimensions and the completely disordered isotropic liquid

phase. Hence, these liquid crystalline phases are also known as mesophases. These

mesophases are characterized by a long-range orientational order with partial or no

translational order. Hence, these phases have the property of flow like a fluid and

anisotropic properties of a crystal. These exotic orders in the mesophases lead to

the manifestation of a rich variety of self-assembled structures. The various types of

phases and transitions among them can be obtained by the application of external

stimuli such as temperature and electric field. The properties of these phases can also

be easily tuned by these external impetuses. The effect of external fields on the prop-

erties of these phases has been employed in various technological applications such

as displays, sensors, lenses, phase modulators, etc. In addition to these technological

applications, the liquid crystal system is a fertile area of research for fundamental

studies on the nature of order-disorder transitions, symmetry-breaking phenomena,

electro-optical effects, elastic instabilities, dynamics and nature of topological defects,

etc. Furthermore, the knowledge of liquid crystalline systems can be utilized to un-

derstand other systems such as polymers, colloids, biological systems, and granular

media wherein the orientational order can be observed.
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This thesis deals with the self-assembled ordered structures in liquid crystalline

systems exploring the molecular organisation, phase transitions, and instability-induced

pattern formation. In this thesis, four different problems are investigated using theo-

retical and computational tools such as phenomenological theory, Monte Carlo simu-

lations, and other numerical methods. The thesis is divided into seven chapters which

are summarized as follows.

Chapter 1

In this chapter, we give a brief introduction to the various liquid crystalline systems

and their phases. We also discuss the earlier theoretical studies of these systems

which are relevant to the research works carried out in this thesis.

Chapter 2

This chapter deals with the self-assembled structures of symmetric Bent-Core (BC)

molecules. The symmetric bent-core molecules are achiral in nature and have C2v

point symmetry. These achiral bent-core molecules are known to exhibit spontaneous

chiral symmetry breaking in their tilted polar smectic phases. A large number of

studies involving experiments, phenomenological theories, mean-field theories, and

Monte Carlo and molecular dynamics simulations have been carried out in the past

to understand the phase behavior of these systems. In spite of these studies, the

underlying mechanism of chiral symmetry breaking is not fully understood. This

type of chiral symmetry breaking has also been observed in some colloidal bent-core

particles. These observations in both molecular and colloidal systems imply that

the geometry or shape of the constituent particles plays an important role in this

symmetry-breaking phenomenon. The geometrical effect of shape can be included in

the system by incorporating the excluded volume interaction between two bent-core
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molecules.

However, the analytical calculation of the excluded volume is a formidable task

for these BC molecules. It is known that the exact expression for the excluded vol-

ume between two straight rod-like molecules can not be found analytically. We have,

therefore, numerically computed the excluded volume between two BC molecules in

a layer assuming perfect orientational order. In these computations, we have utilized

two types of models for BC molecules, namely the hard sphero-cylinder model (HSC)

and the bead model. In the HSC model, the BC molecule consists of two rigid sphero-

cylindrical arms connected end to end at an angle which is termed as the bending

angle. In the bead model, hard spherical beads are joined together to form the BC

molecule. We have computed the excluded volume for various values of the bending

angle and tilt angle of the molecules with respect to the layer normal. The config-

uration with minimum excluded volume is an entropically favorable state. We show

from these computations that the minimum excluded volume between the molecules

in the tilted polar smectic layer corresponds to a chiral layer structure. Thus, the ex-

cluded volume effect accounts for the spontaneous chiral symmetry breaking observed

in the tilted polar smectic phases. For the HSC model, we find that the tilted polar

smectic phase with only C2 symmetry of the layer is always favorable irrespective of

the values of the bending and tilt angles. On the other hand, the bead model of the

BC molecules predicts the existence of Cs, C1, and C2 symmetric layers depending

on the values of the bending and tilt angles. We have constructed a phase diagram

in the bending and tilt angles plane showing the stability regions of these different

symmetries of layers.

The excluded volume computations give results corresponding to athermal sys-

tems. To account for the thermal and electric field-driven phase transition, we have

also carried out Monte Carlo (MC) simulations using a coupled XY-Ising model.

Therefore, based on the excluded volume results, we have constructed a coupled XY-
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Ising model to describe the phase transitions of a system. In this model, we assume

that the BC molecules in a layer are tilted with respect to the layer normal with a

fixed tilt angle but with variable tilt directions. The tilt direction of the BC molecules

in a layer plane can be described by an XY spin. In addition, depending on the ori-

entation of the bending direction of a BC molecule in a layer, there can be a left

or right-handed configuration which can be described by an Ising variable. There-

fore, the Ising variable represents the chiral configuration of an achiral BC molecule

with respect to the layer. We have carried out Monte Carlo simulations on a square

lattice with periodic boundary conditions. The model predicts different types of

phase sequences depending on the interaction parameter and also accounts for elec-

tric field-induced chiral symmetry breaking. The electric field-induced breaking of

chiral symmetry in bent-core liquid crystals has been reported experimentally.

Chapter 3

In the orthogonal smectic A (SmA) phase, the long axes of the molecules are, on aver-

age, parallel to the layer normal, whereas in the smectic C (SmC) phase, the average

orientation of the long axes is tilted with respect to the layer normal. Therefore,

a significant decrease in layer spacing is usually observed across the SmA to SmC

phase transition on cooling. However, some compounds known as de Vries materials

have been found in which the layer spacing does not change significantly across the

SmA to SmC transition. Two types of model have been proposed for the smectic A

phase known as the de Vries SmA (dSmA) phase to account for the minimal layer

contraction across this dSmA to SmC transition. In the first model, known as the

non-correlated layer model, all the molecules in a layer are, on average, tilted with

respect to the layer normal along a preferred direction. But, the tilt directions in each

layer are randomly correlated due to the weak inter-layer interactions giving rise to
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the uniaxial dSmA phase about the layer normal. In the second model, known as the

diffusive cone model, molecules in a layer are, on average, tilted with a fixed tilt angle

but with random tilt directions. Therefore, the molecular long axes are uniformly

distributed over the surface of a cone, and the average orientation of molecular long

axes is parallel to the layer normal. This organization of the molecules gives rise

to the uniaxial dSmA phase. In both models, as the molecules are already tilted

with respect to the layer normal in the dSmA phase, the layer spacing is significantly

lower than the molecular length. However, the tilt directions of the already tilted

molecules get correlated across the dSmA to SmC transition with no significant layer

contraction.

These de Vries materials generally exhibit the following phase sequence on cooling:

isotropic→ dSmA→ SmC phases. To the best of our knowledge, there is no report of

a compound exhibiting the SmA → dSmA transition. We have recently found that a

compound consisting of bent-core hockey-stick-shaped molecules exhibits the isotropic

→ SmA → dSmA → SmC → crystal phase sequence on cooling. We have developed

a phenomenological Landau theory to account for the SmA → dSmA → SmC phase

transitions observed in our sample. As both the orthogonal SmA and dSmA phases

have the same uniaxial D∞h point symmetry, a first-order phase transition between

them is expected which is observed experimentally. We have computed the layer

spacing as a function of temperature which agrees very well with the experimental

findings. We have also constructed a theoretical phase diagram depending on the

model parameters to indicate the stability regions of these phases.

Chapter 4

It has recently been observed in our group that a liquid crystal compound exhibits

banded spherulitic growth of its solid phase from its smectic A phase on cooling.
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We have constructed a phase-field model with a conserved order parameter and a

non-conserved order parameter to account for this banded spherulitic growth. We

show that the growth dynamics of this system can be described by the equations of

a time-dependent Ginzberg-Landau (TDGL) model of type C. In this chapter, we

present the detailed formalism of this model and investigate various patterns that

form during spherulitic growth depending on the model parameters.

The linear stability analysis (LSA) of the model was performed to predict the

instability threshold as a function of model parameters. We find that modes with

a range of wave vectors become unstable above a threshold control parameter. The

wave vector corresponding to the fastest-growing mode is generally the most dominant

mode and it gives rise to the periodicity of the instability-induced patterns. We

have also carried out numerical studies on the full nonlinear equations of the model

to investigate the pattern formations and their growth dynamics. The numerical

studies reveal the existence of rich varieties of patterns such as ring banded (target),

broken ring, and continuous circular patterns. We have constructed a phase diagram

depending on the model parameters to indicate the stability regions of these patterns.

It is found that the patterns mostly grow as a circular domain with the rhythmic or

non-rhythmic growth of its radius. In the rhythmic growth, the radius of the pattern

increases in a step-like fashion with time, giving rise to the non-uniform growth

dynamics. Though the growth of radius is nonlinear at each individual step, it shows,

on average, a linear growth law with time. On the other hand, for the non-rhythmic

growth, the radius of the pattern increases linearly with time in a smooth manner.

In both cases, the radius of the pattern generally increases on average linearly with

time.
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Chapter 5

The spherulitic growth of solids is a ubiquitous phenomenon exhibited by many dif-

ferent types of materials, such as polymers, minerals, bio-materials, metals, and salts.

In spherulitic growth, the solid phase after nucleation grows with a spherical growth

front with continuous orientational symmetry in contrast to the growth of a crystal

having discrete orientational symmetries. In spite of research on it for over a century,

the detailed understanding of the mechanism of this abundantly found natural growth

phenomenon is still lacking. It is found that this spherulitic growth morphology is of-

ten associated with the formation of many radially aligned fibrillar crystallites, which

branch non-crystallographically to fill space during the growth. In addition to this

continuous spherulitic growth, a kind of spherulite known as banded spherulite has

also been observed. A banded spherulite is accompanied by a spherically symmetric

growth front and periodic radial variation of birefringence. This variation of birefrin-

gence in quasi-two-dimensional geometry produces concentric interference color bands

when viewed through crossed polarizers. In most materials, these banded spherulites

are found to be formed by radially oriented periodically twisted fibrillar crystallites.

The twisting can occur in a system due to multiple causes such as surface stress mis-

match, iso-chiral screw dislocation, auto deformation, and topological defects. The

organized twisting of the fibrillar crystallites is considered to be a primary mecha-

nism for the formation of the banded spherulites. Here, we have studied the banded

spherulitic growth of a liquid crystalline compound (8OCB) during its crystallization

from the smectic phase. The detailed experimental studies reveal that the solid state

of this material exhibits the coexistence of fibrillar crystallites embedded in an amor-

phous state. The banded spherulites in this compound are formed with a periodic

variation of the composition of untwisted radially aligned fibrillar crystallites and an

amorphous solid state, in contrast to the organised twisting of the fibrillar crystallites
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proposed earlier.

In this chapter, we used the model described in Chapter 4 to account for the

spherulitic growth observed in the compound 8OCB. Armed with our experimental

results, we have proposed a conserved and a non-conserved order parameters for

describing the transition to the banded spherulitic state from the smectic phase of

this compound. The conserved order parameter describes the local deviation of the

molecular density in the banded spherulite from the average density of the smectic

phase. Whereas the non-conserved order parameter describes the local composition

of the molecules in the nanocrystalline and amorphous solid states of the banded

spherulite. The control parameter in the model is found to be the supercooling

of the system from its smectic phase. The linear stability analysis (LSA) of the

model was performed to predict the instability threshold as a function of the control

parameter. We find that modes with a range of wave vectors become unstable above

the threshold. The wave vector of the fastest-growing mode gives the periodicity of

the banded spherulite. We have compared the periodicity obtained from the LSA

with the experimentally measured band spacing of the banded spherulite for different

values of supercooling. The good agreement between the theoretical results and

experimental data confirms the general validity of this model. We have performed

numerical studies of the full nonlinear equations to investigate the growth dynamics

of the banded spherulite. The simulation results on this system show ring-banded

pattern formation with rhythmic growth. The computed band spacing obtained from

simulations as a function of supercooling also agrees very well with the experimental

findings. Interestingly, it is experimentally observed that the band spacing diverges

at a particular supercooling on approaching this value from below. This divergence

of band spacing has also been reported for some other materials. However, to the

best of our knowledge, there is no report explaining this observation. Our model, for

the first time, accounts for this observation in both the LSA and simulations.
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Chapter 6

Wrinkling instability can occur in various systems such as our brains, dry fruit skins,

animal skins, flowers, the crust of the earth, etc. To get better insights into the

underlying mechanisms leading to this instability, an uniaxially compressed floating

thin sheet atop a substrate is often considered as a good model system. In this type

of model systems, the wrinkling wavelength is determined by the properties of the

substrate and the thin sheet. For example, the wavelength λ corresponding to a thin

sheet on an isotropic fluid substrate can obtained by a scaling relation λ ∼ (B/ρg)1/4

where B, ρ, and g are bending modulus of the thin sheet, density of the isotropic

liquid and the acceleration due to gravity, respectively. In this case, λ depends on

a few material parameters which limits the tunability of the wavelength using exter-

nal stimuli such as electric field, temperature, and other substrate properties. The

wrinkling instability can be easily tuned using these external drives by adopting an

anisotropic medium as the substrate. We have theoretically studied the wrinkling

instability of a thin sheet floating on a nematic medium when the sheet is subjected

to an in-plane uniaxial compression. This chapter describes the detailed theoretical

model and the results obtained in this study. In the model, we have considered three

essential free energies associated with the system, namely the bending energy of the

thin sheet and the gravitational and distortion energies of the nematic fluid. Follow-

ing a similar procedure which has been used in earlier studies dealing with a thin

sheet floating on an isotropic fluid substrate, we minimize the total free energy of the

system by assuming a sinusoidal undulation of the compressed thin sheet. The wave-

length of the periodic undulation of the thin sheet corresponding to the minimum

energy gives the equilibrium value of the wave vector of the wrinkling pattern. We

have studied the variation of the wave vector of the wrinkling pattern as a function

of various model parameters. The periodicity of the pattern is always found to be
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larger in the case of nematic substrate compared to its isotropic state. This arises

due to the excess energy cost associated with the distortion of the nematic substrate.

The periodicity of the pattern sensitively depends on the curvature elastic constants

and the surface anchoring conditions of the nematic. Interestingly, it is also found

that the wrinkling periodicity depends on the amount of compression for the hybrid

anchoring condition of the nematic director on the bounding surfaces.

Chapter 7

This chapter contains the summary of the research works described in this thesis and

also possible directions for future research.
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Chapter 1

Introduction

Solid, liquid, and gas are the three commonly known states of materials. In the solid

state, constituent particles primarily arrange themselves in a regular lattice structure,

whereas they exhibit no long-range positional order in both the liquid and gas states.

In addition to these three states, some materials consisting of strongly anisotropic

molecules exhibit intermediate states between their ordered crystalline state and dis-

ordered isotropic liquid state that are known as liquid crystalline materials or liquid

crystals. These intermediate phases, commonly known as liquid crystalline phases or

Figure 1.1: Schematic representation of the crystal, isotropic, and intermediate phases
of a liquid crystalline system constituting rodlike particles.

mesophases, have flow properties just like liquids, as well as anisotropic physical prop-

erties like crystals. Some of these mesophases are schematically shown in figure 1.1.

Due to the tunable electro-optical properties, the liquid crystals are widely used in

1
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technological applications such as displays, sensors, optical modulators, etc. Besides

their applications, these soft materials provide ample opportunities for the funda-

mental understanding of natural phenomena such as dynamics of topological defects,

spontaneous symmetry-breaking phenomena, and order-disorder transitions. Further-

more, the knowledge of liquid crystalline systems can be utilized to understand other

systems such as polymers, colloids, biological systems, and granular media wherein

the orientational order can be observed.

1.1 Liquid crystalline phases

Liquid crystal was first found experimentally by Austrian botanist Friedrich Reinitzer

in 1888 [1, 2]. Based on the experimental studies conducted since its discovery, it can

be primarily classified into two groups: lyotropic liquid crystal and thermotropic

liquid crystal. The lyotropic system is associated with the mixture or solution con-

taining solute and solvent molecules. Living organisms, colloidal suspension, and

surfactant solutions are good examples of lyotropic liquid crystalline systems. Liquid

crystalline properties in this system are strongly determined by the concentration

of solute molecules. On the other hand, the compounds consisting of anisotropic

molecules that exhibit the liquid crystalline phases on heating or cooling are known

as thermotropic liquid crystals. For both the lyotropic and thermotropic liquid crys-

tals, the anisotropic shape of the constituent molecules/particles strongly determines

the existence of mesomorphic phases. So far, various thermotropic liquid crystalline

compounds comprised of molecules with different shapes (see figure 1.2) such as rod-

like (calamatic), disk-like (discotic) [3], and bent-core banana-shaped [4] have been

synthesized. These compounds exhibit a wide variety of mesophases such as nematic,

cholesteric, smectic A, smectic C, blue phases, columnar phases, and banana phases

(i.e. B1, B2, B4, B6 and B7 phases) [5–12]. In the following, we discuss the self-
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Figure 1.2: Schematic representation of different shaped liquid crystalline molecules
from left rodlike (8OCB), discotic ( Benzene haxa alkanoates), Bent-core, and Hockey
stick molecules.

assembled structural organization of molecules in some of these mesophases and their

macroscopic symmetries.

1.1.1 Nematic phase

In the uniaxial nematic phase, anisotropic rodlike molecules align their long axes

on average in a preferred direction while there is no long-range positional order of

the center of masses of the molecules. Thus, the nematic phase has a long-range

orientational order but is essentially a liquid state due to the absence of a truly

positional order. The average alignment direction of the molecular long axes is called

the director, which is usually denoted by a unit vector n̂. The long axes of the

molecules align equally likely along n̂ and −n̂ in the nematic phase, giving rise to

the n̂ ←→ −n̂ symmetry of the medium. Therefore, the uniaxial nematic phase has

the D∞h point symmetry. The typical molecular arrangement in the nematic phase

is shown in figure 1.3.
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Figure 1.3: Schematic representation of molecular arrangement in the uniaxial ne-
matic phase. The nematic director n̂ and the long axis of a molecule â are denoted
by the double-headed red and black arrows, respectively.

Orientational Order Parameter

A macroscopic physical quantity known as the order parameter is usually defined

to describe the transition between two phases. Across the transition from the high

symmetry to the low symmetry phase, the order parameter changes from zero to

a non-zero value. Thus, the order parameter is defined so that a non-zero value

corresponds to the ordered lower symmetry state, and the null value represents the

disordered higher symmetry state. The order parameter can be a scalar, vector,

tensor, or even a complex quantity, depending on the system. Here, we define the

orientational order parameter corresponding to the isotropic to uniaxial nematic phase

transition for anisotropic rodlike molecular systems. Both the isotropic and nematic

phases are characterized by liquid-like order with no long-range positional order of the

molecules. However, the nematic phase is associated with a long-range orientational
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order of the long axes of the molecules. In both these phases, the positions of the

molecular center of mass are randomly distributed over space, ascribing the fluid

nature of the phases.

To describe the orientational order in the nematic phase, an order parameter can

be defined as follows. For convenience, we assume the molecules have a rigid rodlike

shape, and the orientation of the long axis of a rodlike molecule is denoted by a unit

vector â. To specify the average orientation of the long axes of the molecules at a point

r⃗ = (x, y, z), we utilize the thermal average of the relevant tensors that are composed

of â over a small but macroscopic volume around the point r⃗. Naturally, the first

choice is a tensor with rank one given by ⟨â⟩ where the angular brackets ⟨⟩ denote

the ensemble average and it represents a vector order or polar order in the system.

This order parameter is analogous to the magnetization in a ferromagnet. However,

in the nematic phase, though there is an alignment of the molecular long axes along

a preferred direction n̂, but no polar order is found. Thus, the director n̂ is apolar in

nature with n̂ ←→ −n̂ symmetry. Therefore, a second-rank tensor Q is considered as

the order parameter for the isotropic to uniaxial nematic phase transition, and the

element of the tensor is defined as

Qij = ⟨aiaj −
δij
3
⟩

where i, j are cartesian indices. According to the definition, the tensor Q should be

zero for the isotropic phase that is ensured by the Kronecker delta as ⟨a2i ⟩ = 1/3.

In general, the symmetric traceless tensor order parameter Q has five independent

elements, and it can be brought to a diagonal form in the principal coordinate frame.

For the uniaxial nematic phase, this tensor can be written as

Qij = S(ninj −
δij
3
) (1.1)
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where the scalar S measures the degree of alignment of the long axes of the molecules

along the nematic director n̂ and is defined as

S =
1

2
⟨3(â · n̂)2 − 1⟩. (1.2)

The order parameter S vanishes in the isotropic phase, and it becomes non-zero

in the nematic phase. In principle, the scalar order parameter S lies in a range

−1/2 ≤ S ≤ 1. S = 1 represents the perfect molecular alignment along the director,

whereas S = −1/2 corresponds to the confinement of the long axes of the molecules

in a plane perpendicular to the director. In general, the positive values of order S are

associated with the prolate-shaped or rodlike molecules.

Landau-de Gennes theory

A simple phenomenological Landau-type theory can be constructed by utilizing the

orientational order parameter Qij to describe the isotropic-Nematic transition [5–7].

This theory was first developed by de Gennes [5]. Generally, to construct a Landau-

type theory accounting for a phase transition, the free energy density of a system is

expanded in terms of its order parameter, where the order parameter is assumed to

be small, and hence, the terms involving the higher power of the order parameter are

often neglected. The terms in the free energy density must be symmetry-invariant

with respect to the high symmetry phase. Based on these arguments, the free energy

density of the nematic phase can be expressed as

f = f0 +
A

2
Tr(Q2) +

B

3
Tr(Q3) +

C1

4
(TrQ2)2 +

C2

4
TrQ4 (1.3)

where f0 is the free energy density of the isotropic phase, and the coefficients A,B,C1,

and C2 are the coefficients of the respective terms involving the trace of the powers of

the order parameter tensorQ. These constants, in general, depend on the temperature



7 1.1. Liquid crystalline phases

and properties of the materials. In this free energy density expansion, the terms

consistent with the symmetries of the isotropic phase are the rotational-invariant

quantities and are retained up to the fourth power. Using the expression 1.1 of the

tensor Qij, the free energy density can be written as

f = f0 +
a

2
S2 +

b

3
S3 +

c

4
S4 (1.4)

where a = 2A/3, b = 2B/9, and c = (4C1+2C2)/9. The condition c > 0 is needed for

the stability of the phases. The possibility of the different phases can be determined

by minimizing the free energy density with respect to S. The extrema of the free

energy density satisfy

df

dS
≡ aS + bS2 + cS3 = 0 (1.5)

and the roots of this equation are

S = 0,
−b+

√
b2 − 4ac

2c
,
−b−

√
b2 − 4ac

2c
. (1.6)

The root corresponding to the minimum value of the free energy represents the equi-

librium value of the order parameter. This equilibrium value varies with temperature

across the phase transition. In Landau theory, it is generally assumed that the coef-

ficient a is the only temperature-dependent quantity, and it is also assumed to follow

a linear relation a(T ) = a′(T − T0) where a′ is a constant and T0 is the supercooling

limit of the isotropic phase.

Figure 1.4 (a) shows the variation of the free energy density as a function of

the order parameter S at different temperatures. The free energy density at high

temperatures (i.e., a >> 0) has only a minimum at S = 0 corresponding to the

isotropic phase. The nematic phase with S ̸= 0 becomes stable at lower temperatures.

The isotropic-nematic transition temperature TNI can be determined by equating the
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free energy of the nematic phase to that of the isotropic phase, i.e., f(S = SNI , T =

TNI) = f(S = 0, T = TNI) where SNI is the value of the order parameter for the

nematic phase at T = TNI . Therefore, one can write

aS2
NI

2
+
b

3
S3
NI +

c

4
S4
NI = 0 (1.7)

and SNI also satisfies equation 1.5. Using equations 1.5 and 1.7, we obtain SNI =

−2b
3c

= −3a
b
. Therefore, we have a(TNI) = 2b2

9c
. The expression of the transition

temperature becomes

TNI = T0 +
2b2

9a′c
(1.8)

The variation of the equilibrium value of the order parameter S as a function of

temperature is shown in figure 1.4 (b). In the isotropic phase, S is equal to zero and

undergoes a first-order transition to the nematic phase, showing a jump discontinuity.

Figure 1.4: (a) The variation of the free energy density as a function of the order
parameter for different values of a. (b) The variation of the order parameter S as
a function of temperature. Where the other constants are a′ = 0.1, b = −0.6 and
c = 0.65.

Nematic Elastic energy

In the previous section, we discuss the phenomenological theory for isotropic to ne-

matic transition, assuming the homogeneity or uniformity of the order parameter

throughout the sample. In the real system, the order parameter can vary over the
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space depending on various parameters, such as applied field and surface anchoring

conditions. The spatial variation of the order parameter gives rise to a higher en-

ergy state of the system from its homogeneous ground state. The energy cost due

to the spatial variation of the order parameter can be included in the free energy

density through the terms composed of the gradients of the order parameter. For the

construction of this elastic energy cost, it is generally assumed that the order param-

Figure 1.5: Schematic representation of the three elastic deformation modes of the
nematic director field: (a) splay, (b) twist, and (c) bend deformation modes.

eter varies slowly over space. Therefore, the symmetry invariant terms involving the

lower order gradients of the order parameter are often considered in the elastic energy

expansion. Neglecting the higher-order terms, the nematic elastic energy is given by

fe =
L1

2

∂Qij

∂xk

∂Qij

∂xk
+
L2

2

∂Qij

∂xi

∂Qjk

∂xk
+
L3

2

∂Qjk

∂xi

∂Qik

∂xj
(1.9)

where L1, L2 and L3 are positive elastic constants [7]. Sometimes, the scalar order

parameter S is assumed to be fixed over space. In this case, the spatial variation

occurs through the changes in orientation of the director field n̂(r⃗). By assuming the

slow variation in the director field, the elastic free energy density of the system can

be expressed as

fe =
K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2 (1.10)
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where K1, K2 and K3 are the elastic constants corresponding to the three modes of

the director field deformations, namely splay, twist, and bend elastic deformations,

respectively [5, 7]. This elastic free energy density is commonly known as the Oseen-

Frank elastic energy. The Frank elastic constants K1, K2 and K3 are proportional to

the square of the scalar order parameter S and are also related to the elastic constants

L1, L2 and L3 [7, 13]. Figure 1.5 schematically represents these three modes of the

director field deformations.

Figure 1.6: Schematic representation of the molecular arrangement in the (a) smectic
A and (b) smectic C phases.

1.1.2 Smectic phases

In the smectic phases, the molecules exhibit lamellar order or layered structure in

addition to the long-range orientational order. The layered structure gives rise to a

one-dimensional positional order of the center of mass of the molecules along the layer

normal. However, in the plane of the layer, there is no long-range positional order

of the molecules. Thus, the smectic phases usually have fluid lamellar structures.

Various kinds of smectic phases, such as smectic A, de Vries smectic A, smectic C

phases, etc, have been observed [5, 14, 15]. The typical molecular arrangement in the

smectic phases is shown in figure 1.6.

In the Smectic A phase, the average orientation of the long axes of the molecules,
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i.e., the director n̂, align along the layer normal, and the layer spacing d is similar to

the molecular length l. The Smectic A phase is also characterized by the D∞h point

symmetry. In the smectic C phase, the director tilts away from the layer normal with

a temperature-dependent tilt angle and the tilt direction of the director is uniform

from layer to layer. The tilted organization of the molecules gives rise to the layer

spacing d = l cos θ, where l is the molecular length and θ is the tilt angle. Thus, the

smectic C phase has the C2h point symmetry.

For some compounds, the Smectic A phase undergoes a transition to the Smectic

C phase on cooling, and the layer spacing decreases with decreasing temperature

across this A − C transition. The layer spacing often changes by about 10% across

this transition. For some materials, the layer spacing in the Smectic A phase is found

to be significantly smaller than the molecular length. Moreover, when this smectic

A phase undergoes a transition to the smectic C phase, no significant change in the

layer spacing is observed [14, 15]. These materials are called de Vries materials, and

the corresponding smectic A phase is known as de Vries Smectic A phase. In the de

Vries Smectic A phase, molecular long axes are tilted about the layer normal with a

certain angle, but the molecular tilt directions are random. The de Vries Smectic A

phase is also a uniaxial phase with a D∞h point symmetry.

Figure 1.7: Schematic representation of the molecular arrangement in perfectly or-
dered (a) polar smectic A (SmAP) and (b) tilted polar smectic (SmCP) layers of
bent-core molecules. The long axis and the polar direction of a bent-core molecule
are denoted by the unit vectors l̂ and p̂, respectively.
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1.1.3 Polar smectic phases

All the phases mentioned above are nonpolar in nature. The mesophases with polar

order can easily couple linearly with the external field and can impact technological

applications. Therefore, the search for new mesophases with the long-range polar

order is an active field of research. In this context, some materials, especially bent-

core systems, are known to exhibit long-range polar order in some of their mesophases

[16, 17]. For instance, in the polar smectic A (SmAP) layer, the average orientation

n̂ of the molecular long axes is along the layer normal, and the bending/polar axes

of the bent-core molecules are also aligned along a preferred direction, giving rise

to the polar order in the plane of the layer. Figure 1.7 (a) schematically shows the

orientation of the bent-core molecules in a SmAP layer. It should be noted that

the smectic A phase consisting of SmAP layers can exhibit either ferroelectric or

antiferroelectric properties depending on the direction of the inter-layer polar orders

[16]. It has also been found that the bent-core liquid crystal displays polar order

in some of their smectic C phases. In the tilted polar smectic C (SmCP) layer, as

shown in figure 1.7 (b), the director n̂ is tilted with respect to the layer normal, and

the bending axes of the bent-core molecules are aligned along a preferred direction,

giving rise to the polar order in the layer. Interestingly, the SmCP layer consisting of

achiral bent-core molecules can exhibit spontaneous breaking of chiral symmetry [18].

Depending on the orientation of the polar order and chirality in successive layers, a

rich variety of self-assembled structures are possible [17]. It is experimentally found

that the bent-core liquid crystal mostly displays the smectic C phase known as B2

phase where the direction of the polar order is perpendicular to both the layer normal

and the director n̂ giving rise to the layer chirality.
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1.2 Growth of solid Phases

Liquid crystal solidifies when it is cooled below its freezing point. In general, solid-

ification processes are often described by two growth mechanisms such as diffusion-

and kinetic-limited growths. In the first mechanism, the diffusion of latent heat or

impurity away from the interface primarily controls the solidification rate. This type

of diffusion-limited process can cause the instability of a flat interface, leading to

dendritic growth morphology. This instability is accounted for by the well-known

Mullin-Sekerka theory [19]. The dendritic morphology essentially grows as a homo-

geneous crystal phase with a very complex boundary. In the second mechanism,

diffusion is no longer important, but the molecular attachment kinetics at the inter-

face control the solidification rate. This may lead to a variety of phenomena, including

non-crystallographic branching, defect generation, and polycrystalline solids. The ac-

tivation of these two growth processes depends on the solidification conditions, such

as under-cooling. Depending on these solidification conditions, liquid crystals can

exhibit various types of macroscopic morphologies, including needle crystals, faceted

crystals, dendrites, and spherulites [20–23]. The spherulitic growth has also been

seen in a wide variety of materials, including minerals, salts, biological materials,

polymers, and alloys [24]. However, despite a large number of studies over a century

since its discovery, a general theory accounting for spherulitic growth is still lacking.

Also, the understanding of spherulitic structures is necessary to design new materials

as it affects the mechanical properties of a solid, such as brittleness. In the following,

we briefly discuss the spherulitic structures.

1.2.1 Spherulites

In the spherulitic growth, the solid phase after nucleation grows with a spherical

growth front with continuous orientational symmetry in contrast to the growth of a
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Figure 1.8: Schematic representation of a spherulite domain. (a) The domain is
formed by multiple fibrils emanating from a single nucleation site. (b) The do-
main starts to grow from a bunch of fibrils and continues to grow due to non-
crystallographic branching. At a long time, the domain attains a spherical growth
front, giving rise to the “sheaf of wheat” structure.

crystal having discrete orientational symmetries. The spherulitic growth morphology

is often associated with the formation of many radially aligned fibrillar crystallites

that branch noncrystallographically to fill space during the growth [25]. This distinct

characteristic of spherulites separates them from the other polycrystalline aggregates.

Spherulitic structures are often distinguished into two categories based on their initial

development [26, 27]. In the first one, the spherulitic domain nucleates from a single

site by emanating multiple fibrillar crystals, as shown in figure 1.8 (a). The fibrillar

crystals branch noncrystallographically to fill the space, and the structure grows radi-

ally. In the other case shown in figure 1.8 (b), the nucleation of a spherulitic domain

begins as a single fibrillar crystal from which new fibrils are produced through non-

crystallographic branching. The fibrils start to align radially as the structure grows,

which leads to a spherical envelope. This process produces two “eyes” (uncrystallized

zones) on both sides of the nucleation site as represented by the dotted circle in fig-

ure 1.8 (b). This structure is often known as a “sheaf of wheat” morphology due to

its apparent similarity to a tied sheaf of wheat. The typical microscopic textures of

the spherulites are shown in figure 1.9. The polarised optical microscope image of a

spherulitic domain of 8OCB liquid crystal on crystallization from its smectic A phase
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is shown in figure 1.9 (a) and figure 1.9 (b) shows the same image when a λ plate is

inserted in the light path of the microscope. The scanning electron microscopic image

of the spherulitic domain of 8OCB liquid crystal is shown in figure 1.9 (c) and (d).

Figure 1.9: The polarised optical microscope (POM) images of a spherulite of 8OCB
(a) between crossed polarisers and (b) with a λ-plate inserted in the optical path in
addition to the crossed polarisers. The direction of the major refractive index in the
sample plane is denoted by white double-headed arrows around the seed. (c) The
scanning electron microscopic image of a spherulitic region showing the presence of
fibrils. (d) The zoomed view of the indicated box in (c).
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Chapter 2

Spontaneous breaking of chiral

symmetry in achiral bent-core

liquid crystals: Excluded volume

effect

Bent-Core banana-shaped molecules exhibit tilted polar smectic phases with macro-

scopically chiral layer order even though the constituent molecules are achiral in

nature. Here, we show that the excluded volume interactions between the bent-core

molecules account for this spontaneous breaking of chiral symmetry in the layer. We

have numerically computed excluded volume between two rigid bent-core molecules

in a layer using two types of model structures of them and explored the different

possible symmetries of the layer that are favored by the excluded volume effect. For

both model structures of the molecule, the C2 symmetric layer structure is favored

for most values of tilt and bending angle. However, the Cs and C1 point symmetries

of the layer are also possible for one of the model structures of the molecules. We

have also developed a coupled XY-Ising model and performed Monte Carlo simula-
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tions to explain the statistical origin of spontaneous chiral symmetry breaking in this

system. The coupled XY-Ising model accounts for the experimentally observed phase

transitions as a function of temperature and electric field.

2.1 Introduction

Chirality is associated with many natural phenomena occurring in microscopic as well

as in macroscopic systems. According to Lord Kelvin, an object is chiral when it is

not superimposable with its mirror image. Chirality is manifested in various liquid

crystalline phases such as cholesteric phase, blue phases, chiral smectic phases, twist-

bend nematic phases, etc. [1, 2]. In general, a macroscopic phase shows chirality

when its constituent molecules are chiral. But, achiral molecules can sometimes

exhibit macroscopic chiral phases leading to spontaneous breaking of chiral symmetry.

The bent-core (BC) banana-shaped molecules are now known to exhibit such chiral

symmetry breaking in some of their liquid crystalline phases [3–5]. The underlying

microscopic molecular mechanism responsible for this chiral symmetry breaking is

still not well understood.

The BC molecule consists of two rigid rodlike arms joined end to end at an angle

of about 120 degrees between them. In addition, flexible aliphatic chains are usually

attached at both the free ends of the molecule. The line joining the ends of the

molecule is defined as the long axis. Because of the bent shape of the molecule, it

has a transverse shape polarity giving rise to the C2v point symmetry and the BC

banana-shaped molecules are achiral in nature. In their tilted polar smectic phases,

the BC molecules arrange themselves in fluid layers and their long axes on average

tilted with respect to the layer normal in a given layer as shown in figure 2.1. The

average orientation direction of the long axis l̂ of the molecules in a layer is denoted

by the apolar unit vector n̂ known as the director. In addition, the transverse bending
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Figure 2.1: Schematic representation of the orientation of a BC molecule in a perfectly
ordered tilted polar smectic layer where θ, ϕ and ψ are the Euler angles. The layer
normal k̂ is parallel to the z-axis and the XY plane is the layer plane. The double-
headed arrow represents the projection of the long axis on the layer plane. For a
perfectly ordered layer, the director n̂ and polar order P⃗ are parallel to l̂ and p̂ of the
molecules respectively. The unit vector ξ̂ = (k̂ · l̂)(k̂× l̂)/|(k̂ · l̂)(k̂× l̂)| represents the
tilt direction of a molecule which is perpendicular to the (l̂,k̂) plane.

direction p̂ of the molecules also align on average giving the polar order P⃗ in the the

layer. The chirality of a layer arises depending on the mutual orientations of three

directions namely the layer normal(k̂), the director (n̂) and the polar order (P⃗ ). The

chirality of a layer can be defined in terms of the sign of the vector triple product

(k̂ · n̂)[(k̂× n̂) · P⃗ ] consistent with the apolar nature of both the director and the layer

normal. The chirality of a layer can then be quantified by cosψ = P̂ · (k̂ × n̂)/sinθ,

where θ and ψ are the tilt angle and roll angle of the molecules in the layer respectively.

The roll angle ψ defines the rotation of the tilted BC molecule about its long axis.

When the roll angle ψ is equal to 0 or π, the polar axis P̂ , projection of n̂ on the layer

plane and layer normal are mutually orthogonal describing a right or left-handed

coordinate system respectively. There is only a two-fold rotation axis parallel to
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the polar axis P̂ with no mirror plane symmetry giving rise to the chiral C2 point

symmetry of a layer. When ψ is equal to π/2 or 3π/2, the unit vectors P̂ , n̂ and k̂ all

lie in the same plane which itself becomes a mirror plane symmetry of the layer. So,

the layer has an achiral Cs point symmetry. For intermediate values of ψ, the layer

has the lowest C1 point symmetry giving rise to the most general chiral tilted polar

smectic (SmCPG) order in a layer.

The most commonly observed tilted polar smectic (SmCP ) phase of these BC

molecules is the B2 phase [3, 6–10]. In the B2 phase, the roll angle ψ is equal to 0

or π and the layer is chiral with C2 symmetry. The stacking of these chiral SmCP

layers with synclinic or anticlinic tilt order and ferro or antiferro polar order between

successive layers has been observed in the B2 phase. Depending on the relative

orientations of tilt and polar directions in successive layers, there are four possible

configurations of B2 phase with same free energy and all of them generally found

to coexist in this phase. Recently, some colloidal systems have also been found to

exhibit these kind of phases [11].

The possibility of most general smectic (SmCG) phase with Ci point symmet-

ric of the layers was first predicted by de Gennes in the first edition of his classic

book [1]. Brand et al. theoretically discussed properties and applications of the gen-

eral SmCPG phase [12]. The experimental evidence of the existence of this general

SmCPG phase has also been reported [13–18]. Assuming a simple triangular shape of

the BC molecules, Bailey et al. calculated the excluded volume between the molecules

and predicted undulated layer structure with local C1 symmetry [19]. The smectic

phase denoted as SmTP phase with Cs point symmetry of the layers has been re-

ported experimentally [20, 21], where T denotes the ‘Tipping’ angle analogous to the

‘Leaning’ angle of the BC molecules in the layer.

To better understand the complex phase behaviour of BC molecules, a large num-

ber of studies using phenomenological theory, molecular theory, molecular dynamics
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and Monte-Carlo simulations have been performed [11, 22–28]. But few of these stud-

ies addressed or resolved the microscopic origin of chiral symmetry breaking in the

layer. Roy et al. have shown using a phenomenological theory that BC molecules can

exhibit layer structure with C2, C1 and Cs point symmetries depending upon phe-

nomenological constants and discussed the stability of polar smectic A (SmAP ) phase

using uniaxial nematic interaction between the rodlike arms of the BC molecules [22].

But they did not consider the molecular interactions which could lead to tilted po-

lar smectic phases. Xu et al. addressed the excluded volume effect as the possible

reason for the origin of chiral behaviour in the bent-core molecular systems using

Monte-Carlo simulation [24]. In their simulation, a BC molecule was made of seven

spherical beads and the soft repulsive Weeks-Chandler-Andersen (WCA) interaction

potential between two spherical beads of different molecules was used. They did not

observe any tilted polar smectic phase but found chiral crystal phases. So, the role of

excluded volume effect in the chiral symmetry breaking of a tilted polar smectic layer

was not clear. Lansac et al. considered the BC molecule consisting of two connected

sphero-cylinders and performed MC simulation taking hard body interaction between

two BC molecules. But, they did not find any tilted smectic phase. Emelyanenko

et al. have shown the stability of SmCP layer by considering steric, dispersion and

dipole-dipole interactions between two molecules made of interconnected rigid rods

[28]. They did not find C1 symmetric SmCPG chiral layer. Yang et al. have shown

the stability of SmCP phase using Brownian dynamics simulation. The molecular

model and interaction potential employed in their simulation are similar to Xu et al.

[24]. So, it is clear that the molecular origin of the spontaneous breaking of chiral

symmetry has not been resolved.

We consider here the role of hard body interaction or excluded volume effects

on the chiral symmetry breaking in a layer of the tilted polar smectic phase of BC

molecules. We directly compute the excluded volume between two BC molecules in a
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tilted smectic layer and our approach is different from previous molecular dynamics

and Monte Carlo simulation studies. It is well known that the excluded volume

effect plays an important role in phase ordering and properties of soft matter systems

such as van der Waals correction to Ideal gas law, Onsager’s theory of nematic to

isotropic transition [29]. Two types of models for the BC molecules are considered in

our numerical calculation of excluded volume between two molecules in a layer. We

show that the excluded volume effect favours the chiral symmetry breaking in the

SmCP layer of BC molecules. We have also constructed a coupled XY-Ising model to

describe the statistical origin of chiral symmetry breaking. Monte-Carlo simulation

studies using our XY-Ising model were performed to find the possible phases with

temperature as well as under applied electric field.

2.2 Model

For the computation of the excluded volume, we have considered two types of struc-

tural models for the BC molecules. In one model, hard spherical beads are joined

together to form the BC molecule as shown in figure 2.2(a). The molecular parame-

ters in this model are bending angle β, radius of the spherical beads R and the total

number of beads N . In the other model, the BC molecule consists of two sphero-

cylindrical arms of radius R and length (N − 1)R joined end to end with an angle β

between their long axes as shown in figure 2.2(b).

The analytical calculation of excluded volume even for simple rodlike molecules

is a formidable task. Onsagar first derived an approximate analytical expression for

the excluded volume between hard sphero-cylindrical rods in the limit of large length

to diameter ratio of the rods. Based on these results, he accounted for the isotropic

to nematic transition for this hard rod system at sufficiently high concentrations [29].

We have used numerical tools to compute the excluded volume of bent-core molecules
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Figure 2.2: The model structures (a) bead model (b) hard sphero-cylinder (HSC)
model of a BC molecule used in the computation of excluded volume. The unit
vectors l̂, p̂ and m̂ are body fixed axes. The unit vectors û and d̂ represent the
orientation of upper and lower arms respectively.

in a layer of their tilted polar smectic phase. To reduce the complexity of the problem,

we assume that all molecules in a layer have their centers in the plane of the layer

and also they have the same orientation. A molecular frame (l̂, p̂, m̂) as shown in

figure 2.2 can be used to specify the orientation of a BC molecule in a layer. Then

the orientation of a BC molecule with respect to the layer frame coordinate system

is represented by the Euler angles (tilt angle θ, azimuthal angle ϕ, roll angle ψ) [30]

as shown in figure 2.1.

We compute the excluded volume between the molecules by finding the closest

approach of a molecule around a fixed molecule in a layer. Consider two BC molecules

with the bead type structure which are initially juxtaposed with each other in a

layer with a given orientation. Now keeping one of the molecules fixed, the other

molecule is moved on the layer plane in a particular direction with an azimuthal

angle α without changing its orientation. At each position of the second molecule,

the distance between each bead of one molecule is calculated with respect to the



Chapter 2. Spontaneous breaking of chiral symmetry in achiral bent-core liquid
crystals: Excluded volume effect 26

beads of the other molecule. The second molecule is moved in that direction until

the minimum of these interbead distances exceeds 2R. This position r⃗α gives the

vectorial distance of the closest approach of the second molecule with respect to the

first molecule in that direction α. At this position, the coordinates of all the beads

of the second molecule are stored for this particular value of α. Then by repeating

the above procedure by varying α from 0 to 2π, a 3D excluded volume region around

the fixed molecule can be constructed. This excluded volume region consists of two

parts divided by the midplane of the layer.

The infinitesimal excluded area between the direction α and α + δα is given by

δA⃗ex = 1
2
r⃗α × r⃗α+δα. The area vector direction is parallel to the layer normal or

z-axis. Then the infinitesimal excluded volume of the upper half part between α and

α+ δα is N−1
2
R(û · r⃗α× r⃗α+δα) where the unit vector û denotes the orientation of the

upper arms of the BC molecules in the layer. Similarly, the infinitesimal excluded

volume of the lower half part is given by N−1
2
R(−d̂ · r⃗α × r⃗α+δα), where the unit

vector d̂ denotes the orientation of the lower arms of the BC molecules in the layer.

So, the total infinitesimal excluded volume between the direction α and α + δα is

δVex = N−1
2
R(û − d̂) · (r⃗α × r⃗α+δα). The total excluded volume Vex is obtained by

integrating δVex over the angle α from 0 to 2π.

We numerically compute the excluded volume by discretizing α between 0 to 2π

into M small intervals. Then summing over these discrete values of α, the total

excluded volume can be written as

Vex = 2(N − 1)RAex sin
β

2
cos θ,

where the magnitude of the total excluded area is given by

Aex =
1

2

M∑
i=1

|r⃗i × r⃗i+1|
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and r⃗i is the closest approach of the second molecule in the αi-th direction. A di-

mensionless form of the excluded volume can be obtained by dividing the computed

excluded volume by the volume 4πR3/3. Henceforth, this dimensionless excluded

volume is denoted as Vex in the rest of the chapter. The results presented in this

thesis have been computed using N = 9. For other values of N , the excluded volume

just scales with N without changing the conclusions.

Similarly, the excluded volume between two BC molecules with sphero-cylindrical

arms can be calculated. The algorithms as discussed in the articles [31, 32] for finding

the shortest distance between two straight rods are utilised to find the closest approach

between two molecules. The consistency of our algorithm was checked by computing

the excluded volume for β = π which can be calculated analytically.

We have also computed the excluded volume for non-tilted molecules in the layer

with θ = 0. In this case, the azimuthal angle ϕ can be chosen arbitrarily as ϕ =

0. We calculate the excluded volume between two molecules for different relative

orientations of their polar directions p̂. From the symmetry of the problem, the

excluded volume depends only on the difference in the azimuthal angles δψ between

the polar directions. Without any loss of generality, we fixed ψ = 0 for the first

molecule and computed the excluded volume for different values of ψ of the second

molecule between 0 to 2π using the algorithm discussed above.

The excluded volume between the molecules makes a purely entropic contribution

to the free energy. The free energy density is proportional to the excluded volume

as can be shown analytically for a dilute hard sphere system. So, the molecular

configuration associated with the minimum Vex is favoured energetically.
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Figure 2.3: The variation of the excluded volume Vex with the relative azimuthal
angle δψ between two molecules for an orthogonal smectic layer. Inset shows the
difference in Vex corresponding to δψ = π and 0 for different values of β.
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2.3 Results and Discussions

In the SmA and SmAP phase, the long axes of the BC molecules are on average par-

allel to the layer normal. In the SmA phase, the layers do not possess any polarisation

whereas in the SmAP phase, the layers have an in-plane polar order. The excluded

volume of two such non-tilted BC molecules in a smectic layer is computed for various

relative orientations δψ between their bending directions as shown in figure 2.3. Ex-

cluded volume is minimum for δψ = 0◦ or 360◦ and shows a symmetric maximum at

180◦ as expected from the packing considerations. The excluded volume interaction

therefore tends to align the bending directions of the BC banana-shaped molecules

in the non-tilted smectic layers giving rise to the polar SmAP order. This result is

similar to that found assuming dispersion interaction between the BC molecules [28].

The inset of figure 2.3 depicts the variation of the excluded volume difference between

the parallel and antiparallel configuration of the bending direction of the molecules

as a function of the bending angle β. This excluded volume difference ∆Vex can be

associated with the free energy barrier between the parallel and antiparallel configu-

ration of the bending direction of the molecules. Hence, it contributes to the stability

of the SmA or SmAP phases. For nearly rodlike molecules with β ∼ 180◦, the bar-

rier height is quite low stabilising the SmA phase as expected. These results agree

with the observation of SmAP and SmA phases for lower and higher bending angles

respectively in the MC simulation of HSC model of the BC molecules [26]. The ∆Vex

is always higher for the bead model favouring the SmAP phase compared to the HSC

model of the BC molecules.

In the tilted polar smectic phase, the long axes of the BC molecules in a layer are

tilted with respect to the layer normal. The excluded volume between the molecules

in a layer depends on the tilt angle θ, roll angle ψ and bending angle β of the

molecules. The excluded volume as a function of ψ varies with a periodicity of π and
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Figure 2.4: The variation of excluded volume Vex as a function of roll angle ψ for the
HSC model.

is symmetric about π/2 as expected from the symmetry of the system. Figure 2.4

shows the variation of excluded volume with ψ for different fixed values of θ and

β assuming the HSC model structure of the BC molecules. The excluded volume is

minimum at ψ = 0 and π indicating that it favours chiral symmetry breaking with the

C2 point symmetry of the layer. The profile of the excluded volume as a function of

ψ remains qualitatively same for different values of θ and β. However, for bead model

of the BC molecule, the variation of excluded volume with ψ strongly depends on θ

and β of the molecules as shown in figure 2.5. The profile of excluded volume with ψ

can be classified into four types based on the position of extrema at different values

of ψ. In the first type, the excluded volume remains almost constant for different

values of ψ as shown in plot-I. Hence, the layers with C1, C2 and Cs symmetries

have the same excluded volume and are equally probable. This behaviour occurs

for high and low values of β and θ of the BC molecules respectively. In the second
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Figure 2.5: The variation of Vex as a function of roll angle ψ for the bead model.
Inset shows the magnified view of the indicated region demonstrating the maximum
at ψ = 180◦ for higher values of θ.

case (plot-II), the excluded volume has degenerate minima for a range of values of

ψ about zero in addition to the maximum at ψ = 90◦. The degenerate minima of

the excluded volume favour both C1 and C2 symmetric layer structures with chiral

symmetry breaking. This behaviour was found only for β > 120◦ and moderate

values of θ. In the third case (plot-III), the excluded volume is minimum only at

ψ = 0 favouring the C2 symmetric SmCP layer structure with spontaneous breaking

of chiral symmetry. For the fourth type, the excluded volume has a minimum only at

an intermediate value of ψ between 0 and π/2 as shown in plot-IV. It should be noted

that the excluded volume is maximum at ψ = 0 and π in this case as shown in the

inset of figure 2.5. Hence, the most general SmCPG layer structure with C1 point
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Figure 2.6: The stability diagram in the θ - β plane representing the regions of
stability of the different symmetries of the layers obtained from the excluded volume
interactions for bead model of the molecules.

symmetry is favoured. This case was found for large θ and values of β near 120◦ of the

molecules. Based on these excluded volume analyses, a stability diagram in the the

θ−β parameter plane for the different possible symmetries of the layer is constructed

as shown in figure 2.6. The figure displays four separate regions corresponding to

different possible symmetries of the layer. In region I, the C1, C2 and Cs symmetries

of the layers are possible due to excluded volume interaction. In region II, C1 and C2

symmetries are favoured. In region III and region IV, only the C2 and C1 symmetries

of the layer are found respectively. The layers can have Cs symmetry only in the

region I with high values of bending angle and low values of tilt angle. Whereas,

the layers with C1 symmetry are possible in regions I, II and IV. However, the C2

symmetric layer structure can be found for most values of β and θ studied in our

model as shown in figure 2.6.

Therefore the excluded volume interaction for both HSC and bead models of the

BC molecules predicts C2 symmetric layer structure with chiral symmetry breaking as

found in the B2 phase experimentally. Depending on the tilt and bending angle, the
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bead model also predicts the possibility of the existence of the C1 and Cs symmetric

layer structures. As the excluded volume has equal minima both at ψ = 0 and π, the

right and left handed structures are equally probable. This equality arises due to the

achiral nature of the BC molecules.

Figure 2.7: The variation of Vex with tilt angle θ at ψ = 0 or π for (a) HSC model
and (b) bead model of the molecules.

The variation of excluded volume with tilt angle θ for both HSC and bead model

of the BC molecules is presented in figure 2.7 for a fixed value of ψ = 0◦ and for

different values of β. The excluded volume increases monotonically with θ for all

values of β for the HSC model, as shown in figure 2.7(a). Hence, the excluded volume

for SmAP layer corresponding to θ = 0◦ is always lower than that for the tilted polar

smectic layer with θ ̸= 0◦. Therefore, the SmAP phase is favoured compared to the

SmCP phase for the HSC model of the BC molecules. This result is consistent with

the observation of not finding any tilted smectic phase in the earlier Monte Carlo

simulation study using the HSC model of the BC molecules [26]. The bead model

displays different behaviour compared to the HSC model, as shown in figure 2.7(b).

For the bead model, the minimum of Vex with respect to θ strongly depends on the

bending angle of the molecules. The excluded volume Vex is minimum at θ = 0◦ for

β ≤ 120◦ and the minimum shifts to non-zero value of θ for the higher bending angle.
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So, the SmAP layer is always stable compared to the SmCP layer order for bending

angle β ≤ 120◦. Whereas the excluded volume interaction favours the spontaneous

tilt of the molecules in the layer for β greater than 120◦ giving rise to the chiral C2

symmetry. This can perhaps explain the observation of tilted chiral crystal phases in

the simulation results of BC molecules with β = 140◦ in the article [24]. Our result

also agrees well with the molecular dynamics simulation studies of BC molecules with

β > 130◦ [11].

Figure 2.8: The favoured tilt angle θ for the bead model of the BC molecules at
different values of bending angle β.

Figure 2.8 depicts the variation of the favoured tilt angle as a function of the

bending angle obtained from the excluded volume interaction. This tilt angle increases

from zero beyond β = 120◦ and saturates to a value of 30◦ for nearly rodlike molecules

with β ∼ 180◦. This tilting of the molecules in the layer arises due to the close packing

arrangements of the beads in the rodlike molecules. Similar tilt angles were also found

in earlier simulation studies of BC molecules using the bead model with the Lennard-

Jones interaction potential between the molecules [27]. The favoured tilt angle is

obtained on minimization of the excluded volume between two molecules in a layer,
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and it can be called the effective optimal molecular tilt for each pair of molecules

[33]. However, the average tilt of molecules in a layer in their smectic phase can be

obtained by statistical averaging with this excluded volume interaction.

2.4 Monte Carlo Simulation

Excluded volume effects discussed above clearly favour the chiral tilted polar smectic

phase with C2 point symmetry of the layers for both the bead and HSC model of the

BC molecules. However, excluded volume effects describe the properties of an ather-

mal system. We have, therefore, constructed a coupled XY-Ising model to describe

the cooperative development of chiral order in a layer as a function of temperature

and electric field. Similar types of XY-Ising models have been employed over the past

to describe superconducting Josephson-junction arrays in a transverse magnetic field

[34, 35]. These models have also been used to describe the ordered and disordered

hexagonal columnar phases of discotic liquid crystals [36, 37]. To the best of our

knowledge, there is no report of the coupled XY-Ising model describing the phase

transition in bent-core liquid crystals.

In this model, we assume that the BC molecules in a layer are tilted with respect

to the layer normal with a fixed tilt angle but with variable tilt directions. Hence,

the tilt direction of each molecule can be specified by a unit vector ξ̂ as shown in

figure 2.1. The tilt direction ξ̂ lies on the layer plane and can be considered as an XY

spin. Armed with our excluded volume results, we assume that the roll angle ψ of a

molecule can randomly take a value of either 0 or π. Thus, the bending direction p̂

of a BC molecule can be parallel or anti-parallel to the tilt direction ξ̂ giving p̂ = σξ̂

where σ is an Ising spin variable taking value ±1(see figure 2.9). Therefore, the Ising

variable σ represents the chirality in the orientation of a BC molecule with respect

to the layer.
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We consider the orientational interaction potential between the molecules in a

layer as Uij = −JkB(1 + Aσiσj)(ξ̂i · ξ̂j), where i, j denote the molecular indices and

kB is the Boltzmann constant. The first term favours a synclinic interaction between

the molecules for the parameter J > 0, which has the dimension of temperature. We

assume that this term gives the more dominant interaction between the molecules.

The second term with the dimensionless coefficient A takes into account the synclinic

homochiral or anticlinic recimic orientations between the molecules. From the ge-

ometry of the BC molecules, this term is expected to be lesser than the first term

i.e. A < 1. The potential due to an externally applied electric field is assumed as

Ui(E⃗) = −JkBσiξ̂i · E⃗ where E⃗ represents the effective electric field. Hence, the

Hamiltonian of the system is defined as H =
∑
<i,j>

Uij +
∑
i

Ui where <> denotes the

sum over the nearest neighbour pairs of molecules.

Figure 2.9: Schematic representation of the diffusive cone model describing the ori-
entation of an achiral BC molecule in a de Vries SmA layer.

We carried out Monte Carlo (MC) simulations on a square lattice of dimension

40× 40 with periodic boundary conditions. The XY and Ising variables are updated

by the standard Metropolis algorithm. One of the following three update schemes

is chosen randomly: (i) selection of a new random direction for the XY variable ξ̂



37 2.4. Monte Carlo Simulation

without flipping the Ising spin σ, (ii) flipping of σ with unaffected ξ̂, and (iii) selection

of a new random direction for ξ̂ and flipping of σ. Similar update schemes were also

used in MC simulation for the kinetics study of the coupled XY-Ising model [38].

For simulation at each temperature or electric field, 106 MC cycles were run for

equilibration and additional 106 MC steps were performed to compute the statistical

quantities. The tilt, polar and chiral order parameters are defined as

ξ =
1

L2

〈∣∣∣∣∣
L×L∑
i

ξ̂i

∣∣∣∣∣
〉
,

P =
1

L2

〈∣∣∣∣∣
L×L∑
i

p̂i

∣∣∣∣∣
〉
, and σ =

1

L2

〈∣∣∣∣∣
L×L∑
i

σi

∣∣∣∣∣
〉

respectively, where ⟨ ⟩ denotes the ensemble average and the sum runs over the total

number of lattice points. The expression C = ⟨H2⟩−⟨H⟩2
L2k2BT

2 was used for the calculation of

the dimensionless specific heat per molecule where T is the absolute temperature. To

study the equilibrium phases as a function of temperature, the simulation was started

at a high temperature with an initial isotropic configuration. The initial temperature

Figure 2.10: The representative spin configurations corresponding to the different
phases. The blue and red (light gray) arrows denote the orientations of the unit
vectors ξ̂ and p̂ respectively. The open circle and filled square symbols represent +1
and −1 values of the Ising spin, respectively.

was chosen such that the system remains in its equilibrium isotropic state. In this

isotropic configuration, each molecule is tilted in the layer but their tilt and polar
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directions are randomly oriented as shown in the leftmost configuration in figure 2.10.

This configuration represents an achiral uniaxial smectic layer with no polar order.

Therefore, the long axes of the molecules are distributed on the surface of a cone

giving rise to the de Vries SmA layer structure with the proposed diffused cone model

[39] (see figure 2.9). The system was equilibrated at each temperature and the stable

phase sequence was determined with decreasing temperature. The final equilibrated

state of the system at a given temperature was chosen as the initial configuration for

the MC simulation at the next lower temperature. The same procedure was adopted

for studying the equilibrium phase sequence with increasing electric field.

Figure 2.11: The variation of order parameters with temperature for A = 0.5 at zero
electric field. Inset shows the corresponding specific heat variation.

The equilibrium values of the order parameters as a function of temperature are

shown in figure 2.11 for the model parameter A = 0.5. The tilt order parameter

ξ of the system increases significantly from zero with decreasing temperature below

about T/J ∼ 1.25 while the other order parameters P and σ remain zero till about

T/J ∼ 1.0. Therefore, the system in this temperature range exhibits the non-polar

SmC structure. A typical configuration of the spins in the SmC structure is shown
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in figure 2.10. A small peak in the specific heat corresponds to this transition is also

shown in the inset of figure 2.11. However, the ordering of the XY spins is expected

to be quasi-long range in two dimensions according to Mermin-Wagner theorem [40]

and the transition is of Kosterlitz-Thouless type [41]. Finite-size scaling analysis

is required to accurately determine the transition temperature. On further cooling

below about T/J ∼ 1.0, the order parameters P and σ also become nonzero giving

rise to a chiral tilted polar SmCP structure. A representative spin configuration in

the SmCP structure is shown in figure 2.10. The larger peak in the specific heat,

as shown in the inset of figure 2.11 indicates this transition. Similar transitions are

also speculated in the earlier studies on superconducting systems [34, 35]. The chiral

order parameter σ reaches the saturation value rapidly compared to the other order

parameters across this transition. This is perhaps due to two possible states for the

Figure 2.12: The variation of order parameters with electric field for T/J = 1.8 and
A = 0.5. Inset shows the magnified view of the region at low field.

Ising spin compared to the continuum of states for the XY spin. The number of

states of a spin variable increases the disorderedness in the system and it is reflected

in the variation of order parameters with temperature. This type of phase sequence

has been observed experimentally in bent-core liquid crystals [42].
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Figure 2.12 displays the variation of order parameters with the electric field at a

fixed temperature T/J = 1.8 corresponding to the de Vries SmA state. All the order

parameters are zero at the low field region, as expected in the de Vries SmA layer

structure. Above a certain threshold field, the polar order P in the layer increases

monotonically with the electric field, whereas the other order parameters ξ and σ

remain close to zero. Hence, the layer goes into the de Vries SmAP phase. In this

phase, the bending direction p̂ of the molecules align on average along the field but

the tilt direction ξ̂ is equally likely oriented parallel or antiparallel to p̂. Thus, the

long axes of the tilted molecules have a bimodal distribution around the diffused

cone, giving rise to an achiral biaxial polar layer structure. Above a higher threshold

field, all the order parameters become non-zero and the chiral SmCP layer structure

is stabilized. Therefore, the layer exhibits spontaneous breaking of chiral symmetry.

The electric field-induced breaking of chiral symmetry in bent-core liquid crystals has

been reported [43].

Table 2.1: The observed phase sequences for different values of A.

A Phase sequences during cooling

0.0 de Vries SmA ({ξ, P, σ} = 0) → SmC ({P, σ} = 0, ξ ̸= 0)

0.5 de Vries SmA ({ξ, P, σ} = 0)→ SmC ({P, σ} = 0, ξ ̸= 0)→ SmCP
({ξ, P, σ} ≠ 0)

1.0 de Vries SmA ({ξ, P, σ} = 0) → SmCP ({ξ, P, σ} ≠ 0)

The possible sequences of phases for different values of the model parameter A

are given in table 2.1. For A = 0, there is no chiral or polar interaction between

the molecules and only de Vries SmA and achiral SmC structures can be stabilized.

For intermediate values of A, the de Vries SmA, SmC, and chiral SmCP structures

are stable as discussed above. The tilt and polar interactions being comparable for

A = 1, the de Vries SmA directly going to the chiral SmCP structure is favoured.
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2.5 Summary

We have computed the excluded volume between bent-core molecules in a layer of their

smectic phases. Two molecular models, namely the sphero-cylinder and bead model

of the bent-core molecules were used in the computation of the excluded volume.

The excluded volume results for both models of the BC molecules predict chiral

symmetry breaking in their tilted smectic phase. This is the first report on the

numerical studies of excluded volume between BC banana-shaped molecules in a

layer of their smectic phase, which accounts for the experimentally observed chiral

symmetry breaking. Depending on the tilt and bending angle of the molecules, the

bead model predicts the possibility of C2, Cs and C1 point symmetries of the layers.

We have also developed a coupled XY-Ising model based on the excluded volume

results to investigate the layer structure using Monte Carlo simulations as a function of

temperature and electric field. The model predicts different types of phase sequences

depending on the interaction parameter and also accounts for electric field-induced

chiral symmetry breaking.
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Chapter 3

A phenomenological theory for the

SmA – de Vries SmA – SmC phase

transition

Recently, in our lab, a compound consisting of bent-core hockey stick-shaped molecules

has been found to exhibit the following phase sequence: smectic A–de Vries smectic

A– smectic C. The smectic A phase undergoes a weakly first-order phase transition to

the de Vries smectic A (dSmA) phase on cooling, which in turn undergoes a second-

order transition to the SmC phase on further cooling. The observation of such SmA

to dSmA phase transition has not been reported earlier. Here, we present a theoreti-

cal model to account for the observed phase sequence in our sample. We compute a

phase diagram showing the stability regions of these phases depending on the model

parameters. Theoretical results agree reasonably well with experimental findings,

implying the general validity of our model.

47
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3.1 Introduction

Liquid crystals are known to exhibit emergent physical properties with various types

of complex self-assembled structures of their constituent molecules. Despite a large

number of observed phases, exploring the new phases and their properties is an active

field of research. In the smectic A (SmA) phase, the rod-like molecules arrange

themselves in stacks of liquid-like layers where the long axes of the molecules are, on

average, parallel to the layer normal, giving the layer spacing same as the molecular

length. The average orientation of the molecular long axes is defined as the director

n̂. In the smectic C (SmC) phase, the director n̂ tilts uniformly with respect to the

layer normal. The transition from the SmA to SmC has been observed on cooling

for some compounds consisting of rod-like molecules. The tilt of the director n̂ in

the SmC phase reduces the layer spacing as dC = dAcosθ where dC and dA are

the layer spacing in the SmC and SmA phases, respectively, and θ is the tilt angle.

The layer spacing usually decreases significantly with decreasing temperature across

this transition due to the temperature variation of the tilt angle. For planar-aligned

systems, the large shrinkage in the layer spacing leads to the creation of so-called

chevron defects [1], which enhance the contrast problem in the display that restricts

the commercialization of such smectic liquid crystals.

However, it has been observed that there is no significant change in the layer

spacing over the full temperature range of SmA and SmC phases for some compounds.

For the first time, this was reported by Diele et al. [2]. Subsequently, in 1977, de Vries

reported that the layer spacing does not change significantly across the A-C transition

for a compound TBBA [3]. To account for these observations, he proposed that the

long axes of the molecules are already tilted with respect to the layer normal in the

SmA phase itself, but the tilt directions of the molecules are randomly oriented in

the layer plane, giving rise to the uniaxial configuration about the layer normal. This
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Figure 3.1: Schematic representation of the non-correlated layer model for the de
Vries SmA to SmC phase transition.

proposed molecular organization in the smectic A phase can be easily visualized by

two types of models: (i) non-correlated layer [3] and (ii) diffusive cone model [4]. The

schematic representation of these two types of models are shown in figure 3.1 and 3.2,

respectively. The SmA phase with such types of molecular organization is now known

as the de Vries smectic A (dSmA) phase. In the first model, the molecules in each

layer are, on average, tilted uniformly along a preferred direction, but the tilt direction

varies randomly from layer to layer due to the weak interlayer interactions, giving the

uniaxial symmetry about the layer normal. In the second model, the molecules in

each layer have a preferred tilt angle, but the direction of molecular tilt (i.e., the

orientation of the projection of the long axis on the layer plane) varies randomly.

These random tilt directions give the uniaxial symmetry to the layer. Thus, the

long axes of the molecules in this diffusive cone model are preferentially distributed

uniformly on the surface of a cone. Across the transition from the dSmA to SmC

phase upon cooling, all the pre-tilted molecules in the layers select a preferred tilt

direction without any change in the layer spacing. The compounds that show more

or less the same layer spacing across the A-C transition are commonly known as de
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Figure 3.2: Schematic representation of the diffusive cone model for the de Vries SmA
to SmC phase transition.
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Vries materials.

A large number of experimental studies have been conducted to understand the

properties of these materials, including both calamatic and symmetric bent-core liq-

uid crystals [5–10]. Most of the de Vries materials studied so far exhibit the de Vries

SmA phase at higher temperatures, which often undergoes a transition to the SmC

phase on lowering the temperature [11–16]. A large number of theoretical studies

involving molecular mean-field theory [17–19], simulation [20] and phenomenological

theory [21] have been performed to account for the transition from the dSmA to SmC

phase. However, there is no report of a liquid crystal exhibiting SmA phase, dSmA

phase and SmC phase on cooling it from its isotropic phase. For the first time, we

find a de Vries-type liquid crystal consisting of bent-core hockey stick-shaped (BCHS)

molecules that exhibit the SmA phase, dSmA phase, and SmC phase sequence on cool-

ing. The theoretical models cited above are not suitable for the description of phase

transitions observed in our system. Therefore, we have constructed a phenomenolog-

ical theory to describe these phases and the transitions among them. To the best of

our knowledge, this is the first report of a phenomenological theory accounting for

these phase transitions.

3.1.1 Theoretical Model

We now develop a theoretical model to account for the observed transitions between

the SmA, de Vries SmA, and SmC phases of the sample. In our model, we start

from the high-temperature SmA as the high-symmetry phase and define two order

parameters to describe the observed phase transitions on decreasing temperature.

Assuming without loss of generality, the layer normal in the SmA phase is along the

z-axis, the orientational order of the long axes of the molecules in the smectic layers

can be defined by a traceless, symmetric second-rank tensor Qij = ⟨lilj−δij/3⟩ where

the unit vector l̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) denotes the orientation of a molecular
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long axis, and the angular bracket is for the ensemble averaging. The angles (θ, ϕ)

denote the polar and azimuthal angle made by l̂ with respect to the layer normal and

an arbitrarily chosen x-axis in the plane of the smectic layer, respectively. In this

coordinate frame, the most general orientational order parameter can be written as

Qij =


−S/2 + η cos 2σ η sin 2σ τ cosσ

η sin 2σ −S/2− η cos 2σ τ sinσ

τ cosσ τ sinσ S

 (3.1)

Where S, η and τ are the three scaler order parameters corresponding to uniaxial,

biaxial and tilt order of the molecules in the layer, respectively, and σ is the azimuthal

angle of the director on the layer plane. These order parameters are defined by the

relations S = ⟨cos2 θ − 1/3⟩, η cos 2σ = ⟨sin2 θ cos 2ϕ⟩/2, η sin 2σ = ⟨sin2 θ sin 2ϕ⟩/2 ,

τ cosσ = ⟨sin 2θ cosϕ⟩/2 and τ sinσ = ⟨sin 2θ sinϕ⟩/2. In the SmA phase, only the

uniaxial order parameter is non-zero at S = S0, and the biaxial order parameter η

and tilt order parameters τ are zero. Hence, the orientational tensor order parameter

Qij in the SmA phase becomes

Q0
ij =


−S0/2 0 0

0 −S0/2 0

0 0 S0

 (3.2)

We consider the deviation δQij = Qij −Q0
ij of the orientational order from the SmA

phase as the first order parameter in our theory. The order parameter δQij is zero

in the SmA phase and becomes non-zero in the lower temperature de Vries SmA and

SmC phases.

In addition, the layer spacing decreases across the transition from the SmA phase

to the de Vries SmA phase on cooling the sample. The compression along the layer

normal is given by u = (dA − d)/dA, where d and dA are the layer spacing in the de
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Vries SmA and SmA phase respectively. To take into account this layer compression,

we define the uniaxial strain tensor

Uij =


−u/2 0 0

0 −u/2 0

0 0 u

 (3.3)

as the second-order parameter in our theoretical model. The non-zero trace of the

strain tensor Uij corresponds to volume compression, which gives rise to change the

density of a material. Since the change of density across the transitions between the

observed smectic phases is usually very small, Uij is assumed to be traceless in our

model. The high-temperature SmA phase is characterized by the vanishing of all

order parameters (ζ = u = τ = η = 0), where ζ = S−S0 is the change in the uniaxial

order parameter S from the SmA value S0. In the de Vries SmA phase, ζ ̸= 0, u ̸= 0,

and τ = η = 0. In the SmC phase, all the four order parameters are non-zero.

We now expand the free energy density of the system in terms of these order

parameters consistent with the symmetry D∞h of the SmA phase. The lowest order

invariants corresponding to these order parameters are I1 = ζ, I2 = u, I3 = τ 2,

I4 = η2, and their combinations are also symmetry invariant terms. Therefore, the

homogeneous part of the free energy density of the system can be expanded using

these invariants. The terms linear in ζ or u can not occur due to the stability of the

SmA phase. The homogeneous part of the free energy density up to fourth power

terms in these order parameters can then be written as

fh(ζ, u, τ, η) = f(ζ) + f(u) + f(τ) + f(η) + fc (3.4)
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where

f(ζ) =
χ

2
ζ2 (3.5)

f(u) =
α

2
u2 − β

3
u3 +

γ

4
u4 (3.6)

f(τ) =
A

2
τ 2 +

B

4
τ 4 (3.7)

f(η) =
C

2
η2 (3.8)

fc = λ1uζ − λ2uτ 2 + λ3u
2τ 2 + λ4ζτ

2

−λ5ζ2τ 2 + λ6uζτ
2 − µ1ητ

2. (3.9)

The first four terms on the RHS of equation 3.4 represent the free energy contribution

due to the individual order parameters alone and the last term takes into account the

free energy arising from the coupling between them. As the uniaxial orientational

order parameter ζ is not critical across the transitions in our system; we consider

only the quadratic term with the coefficient χ > 0 and neglect the higher order terms

of it. The expression in equation 3.6 is the free energy density up to quartic order

in the uniaxial compression u. The positive and negative values of u correspond to

contraction and expansion in the layer thickness, respectively and they constitute

different states of the system. Therefore, the odd power terms in u are allowed in the

free energy expansion. The free energy f(u) can therefore accounts for a first-order

transition from a phase(u = 0) to a phase (u ̸= 0) when the coefficient β ̸= 0. The

free energy associated with the tilt order is given by equation 3.7, which contains

only even powers of τ as τ and −τ correspond to energetically equivalent states of

the system. The biaxiality order parameter η is also assumed to be a non-critical

order parameter in our model, and we retain only the lowest order quadratic term

with the coefficient C > 0 in equation 3.8.

We now consider the terms in the free energy expansion arising from the coupling

between the order parameters. As there are four basic invariants in our theory, there



55 3.1. Introduction

can be various terms up to quartic order coupling these order parameters and the

associated phenomenological coefficients. For simplicity, we have considered only the

most dominant lowest-order terms, which can account for the sequence of phases

observed for our sample. The first term of the RHS of equation 3.9 is the lowest

order coupling term between u and ζ, and we neglect the higher order terms. As the

layer compression tends to decrease ζ, the coefficient λ1 is assumed to be positive in

our model. The second and third terms in equation 3.9 take into account the lowest

order coupling between u and τ . The fourth and fifth terms in equation 3.9 take into

account coupling between ζ and τ . The sixth term in equation 3.9 couples the three

order parameters ζ, u and τ . We assume λ6 > 0 as both compression and tilt reduce

the uniaxial order ζ in the layers. The last term in equation 3.9 takes into account

the coupling between the biaxial order parameter η and tilt order parameter τ . The

coefficient µ1 is assumed to be positive, which favors small biaxial order in the smectic

C phase. As η is a non-critical order parameter and its value is assumed to be small,

we discard all the other coupling terms involving higher powers of η in our model.

As usual in Landau theory, the coefficients α and A are assumed to be temper-

ature dependent parameters with α = a(T − T1) and A = α + a(T1 − T2) where a

is a positive constant. The coefficients α and A change sign at the temperatures T1

and T2, respectively, where T1 is assumed to be greater than T2 in our model. All the

other parameters of our model are assumed to be temperature-independent positive

constants. The free energy density in equation 3.4 of the system can be made dimen-

sionless by dividing it by the parameter χ, which has the same dimension as the free

energy density. The dimensionless free energy density can be written as

fh =
1

2
ζ2 +

α

2
u2 − β

3
u3 +

γ

4
u4 +

A

2
τ 2 +

B

4
τ 4 +

C

2
η2 + λ1uζ

− λ2uτ 2 + λ3u
2τ 2 + λ4ζτ

2 − λ5ζ2τ 2 + λ6uζτ
2 − µ1ητ

2. (3.10)
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Here, for convenience, we retain the same notation for the rescaled coefficients of the

free energy density after dividing by χ. Minimization of the free energy with respect

to η gives

η =
µ1

C
τ 2, (3.11)

which predicts induced biaxiality in the system due to the non-zero tilt order of

the molecules. The order parameter η can be eliminated by substituting it from

equation 3.11 in the free energy density in equation 3.10. The free energy density in

terms of ζ, u and τ is given by

fh =
1

2
ζ2 +

α

2
u2 − β

3
u3 +

γ

4
u4 +

A

2
τ 2 +

B̃

4
τ 4 + λ1uζ

− λ2uτ 2 + λ3u
2τ 2 + λ4ζτ

2 − λ5ζ2τ 2 + λ6uζτ
2, (3.12)

where B̃ = B − 2µ2
1/C. The elimination of the order parameter η effectively reduces

the coefficient B without changing the other coefficients in the free energy density.

Again, minimizing the free energy density in equation 3.12 with respect to the uniaxial

order parameter ζ, we obtain

ζ = −λ1u+ λ4τ
2 + λ6uτ

2

1− 2λ5τ 2
. (3.13)

By plugging this expression for ζ into the free energy density in equation 3.12, one

can express it in terms of only two order parameters, u and τ . The equilibrium values

of u and τ can be determined by minimizing this reduced free energy density. It is

found to be hard to minimize this reduced free energy density analytically due to the

presence of highly non-linear terms. Hence, we use Python SciPy optimize module

with Powell method as the numerical tool to minimize this free energy density.
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Figure 3.3: The variation of order parameters ζ, u and τ with temperature. The
vertical lines represent the phase boundaries.

3.1.2 Results And Discussions

We numerically minimize the free energy density with a suitable choice of parameter

values and determine the equilibrium phases at different temperatures. We also com-

pare our theoretical results with our experimental observations. It is found that our

theoretical results show good agreement with the experiments for the following choice

of model parameters: β = 0.32, γ = 43, B̃ = 2.0, λ1 = 0.2, λ2 = 0.08, λ3 = 1.5, λ4 =

0.1, λ5 = 0.1, λ6 = 0.1, a = 0.02/◦C, T1 = 121.3◦C and T2 = 117.7◦C.
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Figure 3.4: The variation of layer compression (u) as a function of temperature.

Figure. 3.3 represents the variation of three order parameters as a function of tem-

perature. At higher temperatures in the SmA phase, all the three order parameters

(ζ, u and τ) are zero. On cooling from the SmA phase, the system undergoes a first-

order transition at about 123.3◦C to the dSmA phase where the two order parameters

ζ and u become non-zero, but the tilt order parameter τ remains zero. It should be

noted that in the dSmA phase, ζ is negative and decreases with decreasing temper-

ature as expected due to the conical distribution of molecular long axes about the

layer normal. On the other hand, the layer compression order parameter u exhibits

a small jump at the transition point and increases with decreasing temperature. The

jump in u indicates a weakly first-order transition, which is confirmed by differential

scanning calorimeter studies of our sample. It should be noted that the non-zero value

of the parameter β predicts a first-order transition, and the ratio of β/γ determines
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its strength. In our model, the low value of β/γ ∼ 0.0074 predicts a weakly first-order

transition. On further cooling, the system undergoes a second-order transition from

the dSmA phase to the SmC phase at the temperature 117.8◦C. In the SmC phase,

all three order parameters become non-zero, and they vary continuously across the

transition characteristic of a second-order transition. The order parameters τ and

u in this phase increase with decreasing temperature, though the order parameter u

varies slightly. In contrast, the uniaxial order parameter ζ decreases with decreasing

temperature.

We compare the order parameter u with the layer compression obtained from

experimentally measured layer thickness as a function of temperature using X-ray

diffraction analysis. Figure. 3.4 shows the comparison between theoretical and exper-

imental variations of u as a function of temperature, which agrees reasonably well for

the above choice of model parameters. Therefore, the good agreement validates the

theory accounting for the experimentally observed SmA → dSmA → SmC phase

transition.

Figure 3.5 depicts a numerically obtained phase diagram of the theoretical model.

Depending on the parameter values α and A, the theory predicts the existence of

the SmA, dSmA, and SmC phases. For large positive values of α and A, only the

SmA phase is stable, whereas the dSmA phase is stable for large negative values of

α. The SmA and dSmA phases are separated by a first-order transition denoted by

a solid line. The symmetry of these phases being the same, a first-order transition is

expected. The transitions between SmA to SmC and dSmA to SmC are second order

in nature in our model and denoted by the dashed line in figure 3.5. These transitions

are found to be second-order in nature for most of the experimental studies. Our

theoretical model predicts a multicritical point where the first-order line meets and

terminates on the second-order line. Both the parameters A and α are assumed to

vary linearly with temperature in our model. Our experimental system is expected
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Figure 3.5: Numerically obtained phase diagram in α − A parameter’s plane for the
other parameter set β = 0.32, γ = 43, B̃ = 2.0, λ1 = 0.2, λ2 = 0.08, λ3 = 1.5, λ4 =
0.1, λ5 = 0.1, and λ6 = 0.1. The black-coloured continuous line represents a first-order
transition line, and the discontinuous (- -) line denotes the second-order phase tran-
sition line. Our system follows the path depicted by a black-coloured discontinuous
(· · · ) line.
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to follow a typical path in the α − A parameter plane denoted by the dotted line.

Therefore, our theoretical model predicts SmA → dSmA → SmC phase transitions

along this line on decreasing temperature as observed experimentally.

3.2 Summary

In summary, we have constructed a theoretical model to account for the SmA–de Vries

SmA–SmC phase sequence observed in our sample. We define a layer compression

order parameter in addition to the orientational and tilt order parameters of the

molecules. The theoretical model describes the weakly first-order phase transition

from the SmA phase to the de Vries SmA phase and a second-order phase transition

from the de Vries SmA phase to the SmC phase, as observed in our experimental

studies. The temperature variation of the layer compression order parameter obtained

from the theoretical model is compared with the experimental results. Our theoretical

results agree reasonably well with experimental findings, giving the general validity of

our model. We also compute a phase diagram showing the stability regions of these

phases in a model parameter plane.
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Chapter 4

Pattern formation and growth

dynamics in a phase-field model

The phase-field model has received much attention due to its simplified implication

in describing the vast majority of natural phenomena. Here, we present a phase-field

model based on time-dependent Ginzburg-Landau equations containing a conserved

and a non-conserved order parameters. Linear stability analysis of the model shows

that a range of wave vectors become unstable depending on the values of model param-

eters. Generally, the wave vector corresponding to the fastest-growing mode mostly

dominants over the other modes, and it determines the characteristic length scale of

the instability-induced patterns. We have studied the variation of the wavelength

obtained from the fastest instability mode as a function of the model parameters.

In addition, we have carried out numerical studies on the model to investigate the

pattern formation and their growth dynamics. The numerical studies exhibit a rich

variety of patterns, such as ring banded (target), broken ring, and continuous pat-

terns. A state diagram has also been constructed depending on the model parameters

to indicate the stability regions of these patterns. The patterns mostly grow with a

circular growth front exhibiting either rhythmic or non-rhythmic growth dynamics in

65
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their radius. However, the radius of the pattern increases, on average, linearly with

time.

4.1 Introduction

Patterns are everywhere in nature, from microscopic to cosmic scales [1–3]. They

have been the subject of curiosity throughout human history. Nonequilibrium sys-

tems produce rich and fascinating varieties of spatial or spatiotemporal patterns [4].

Despite their abundant existence, the understanding of the diversity of patterns and

their microscopic origin is still incomplete. The pattern formation in systems can

arise due to various mechanisms. For instance, the chemical reaction and diffusion of

reactants control the pattern formation in the reactive chemical solutions [5], whereas

the spinodal decomposition can develop the self-aggregated structures in the immis-

cible liquid mixture during phase transition. In addition to the spatial structure of

the patterns, the growth dynamics often play a significant role in the understanding

of the pattern formation. In particular, visually indistinguishable patterns can form

due to different kinds of growth dynamics. The applications and rich varieties of the

phenomena make the study of pattern formation as an active field of research.

A large number of studies using the phase-field model [6–8] have been reported to

describe the structure formation in various systems. These types of models account

for a vast majority of phenomena such as solidification of a melt, phase separation of a

binary mixture, dendritic growth in pure materials [9], eutectic and dendritic growth

in alloys, viscous fingering, crack propagation, and vesicle dynamics [10]. During crys-

tallization, a rich variety of systems such as polymer [11, 12], mineral, liquid crystal

[13], and biological material exhibit the polycrystalline aggregate structures with a

spherical growth front called spherulite [1, 14]. The essential structural features of the

spherulites are the fibrous habit of crystallization and non-crystallographic branching
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[15]. Some spherulites, known as banded spherulites, show concentric band structures

during their formation. These bands are associated with the radial modulation of the

birefringence in the spherulites. The growth dynamics of the spherulites have also

been studied using the phase-field model [6, 16, 17].

A phase-field model generally involves one or multiple continuous conserved or

non-conserved field variables known as order parameters. These order parameters are

defined by coarse-grained averaging of some quantities over the microscopic config-

urations of the constituent particles. Thus, the model does not explicitly deal with

the properties of the individual particle. The order parameters are usually associated

with the macroscopic properties of the system, such as density, compositions, orienta-

tional order, etc and each phase of the system is characterized by the order parameter.

In general, the order parameters of a system are a function of position r and time t.

For instance, in two coexisting phases, the bulk values of an order parameter η(r, t)

vary from η = 0 in the first phase to η = 1 in the second phase. The value of η as a

function of r changes smoothly between the two phases to obey a continuity condition

and produces a diffusive interface of finite thickness. The position of the interface

can be determined by the intermediate value η = 0.5. Thus, the phase field model

naturally takes into account the interface between two phases in contrast to other

models assuming sharp interfaces [7]. The dynamics of the model order parameters

are governed by a relaxation mechanism minimizing the system’s free energy, which

is a functional of the order parameters.

A variety of phase-field models have been adopted in the literature to describe vari-

ous phenomena. Among these models, the time-dependent Ginzburg-Landau (TDGL)

models are mostly used to describe the pattern formation across the phase transition

[18]. The TDGL model associated with non-conserved order parameters is called

model A or the Allen-Cahn model. The TDGL model with conserved order parame-

ters is known as model B, such as the Cahn-Hilliard model for phase segregation in
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binary mixture [19]. The combination of model A and model B is known as TDGL

model C which has been applied in various phenomena such as liquid-liquid phase

transition [20–22], crystal growth in metal alloys [23], eutectic crystal growth [24],

liquid-liquid phase separation and crystallization of a polymer blend [25], and struc-

ture of nanoparticle doped liquid crystalline system [26]. A model of type C was

found to exhibit rhythmic growth of banded spherulite in polymer blends [27]. Re-

cently, the banded spherulitic growth has been observed in a pure liquid crystalline

compound during its solidification from its melts. We have developed a TDGL model

C to account for this spherulitic growth [28]. In this chapter, we explore this model in

its parameter space to get better insights into the stable morphologies of the patterns

and their growth dynamics.

Here, we report a detailed study on TDGL model C using linear stability analysis

(LSA) and numerical computation. The LSA analysis shows that the modes with

a range of wave vectors become unstable depending on the model parameters. In

general, the wave vector corresponding to the fastest-growing mode mostly domi-

nates over the other modes, and it determines the characteristic length scale of the

induced patterns. We study the variation of this characteristic length scale as a func-

tion of various model parameters. It is found that the length scale strongly varies

with the model parameters. The numerical studies of the full non-linear equations

of the model were performed to obtain various pattern morphologies and investigate

their growth dynamics. Various patterns such as ring banded (target), broken ring,

and continuous patterns are observed depending on the model parameters. We have

established a state diagram displaying the stability regions of these patterns in the

model parameter space. It is found that these patterns mostly grow as a circular do-

main and exhibit either rhythmic or non-rhythmic growth of their radius. In rhythmic

growth, the radius of the pattern increases in a step-like fashion with time, giving

rise to non-uniform growth dynamics. Though the growth of radius is non-linear at
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each individual step, it shows, on average, a linear growth law with time. On the

other hand, for non-rhythmic growth, the radius of the pattern increases linearly and

smoothly with time. In both cases, the radius of the pattern generally increases on

average linearly with time. The numerical studies also predict various intermediate

patterns and their growth dynamics.

4.2 Theoretical Model

A time-dependent Ginzburg-Landau model C (TDGL) can be defined by expressing

the free energy of the system in terms of a conserved and a non-conserved order

parameter. For a conserved order parameter, its volume integral over the system

remains constant, whereas this integral for the non-conserved order parameter may

vary with time. We have developed a TDGL model by writing the Ginzburg-Landau

free energy of the system F (ϕ, ψ) in terms of a scalar conserved order parameter

ϕ and a scalar non-conserved order parameter ψ. The physical realization of two

order parameters varies from system to system. The conserved order parameter ϕ

may represent the density or the fluctuation of density for a pure system [20–22, 28],

the densities in a multi-component system [27, 29] whereas the non-conserved order

parameter ψ may relate to the composition in a multi-phase coexisting system [28],

ratio of lamella thicknesses for a polymeric system [29], bond order parameter [20–22],

and crystal order parameter [27]. In general, the free energy of the system can be

written as

F (ϕ, ψ) =

∫
dV [fh(ϕ, ψ) + finh(ϕ, ψ)] , (4.1)

where fh(ϕ, ψ) and finh(ϕ, ψ) are the homogeneous and inhomogeneous parts of the

free energy density, respectively. The free energy density can be expanded in terms

of the order parameters consistent with symmetries of the disordered state of the
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system. The homogeneous part of the free energy density can be written as

fh(ϕ, ψ) = f(ψ) + f(ϕ) + f(ϕ, ψ) (4.2)

where

f(ψ) = W

(
α

2
ψ2 − β

3
ψ3 +

χ

4
ψ4

)
(4.3)

f(ϕ) =
A

2
ϕ2 (4.4)

f(ϕ, ψ) = −γϕψ. (4.5)

The free energy density f(ψ) given by equation 4.3 depends only on the non-conserved

order parameter ψ, and it can describe a phase transition from the ψ = 0 state to a ψ

non-zero state depending on the model parameters α, β and χ. The non-zero value of

the model parameter β gives a first-order transition. The factor W in equation 4.3 is

an overall scale factor of the energy density. Equation 4.4 represents the contribution

to the free energy density due to the conserved order parameter ϕ. Here, ϕ is assumed

to be small and non-critical, and we retain terms up to the quadratic order in ϕ. The

parameter A is a positive constant giving rise to the equilibrium value of ϕ equal

to zero. The mutual interaction between these two order parameters is given by

the free energy density expression 4.5. We consider only the lowest order bi-linear

coupling between the order parameters where γ is a coupling constant. The sign of γ

determines the nature of the mutual interaction. Here, γ is assumed to be positive,

giving rise to the in-phase variation of the two order parameters.

The inhomogeneous part of the free energy density takes into account the long

wavelength spatial variation of the order parameters. At a minimal level, this part of
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the free energy density for our system can be written as

finh =
kϕ
2
|∇ϕ|2 + kψ

2
|∇ψ|2 (4.6)

where kϕ and kψ are the material-specific elastic constants. The values of these

constants are assumed to be positive to ensure the homogeneity of the ground state

of the system.

Using the total free energy of the system, the temporal evolution of these two

order parameters is described by the time-dependent Ginzburg-Landau model C. For

the conserved order parameter ϕ and non-conserved order parameter ψ, the equations

are given by

∂ϕ

∂t
= Γϕ∇2 δF (ϕ, ψ)

δϕ

∂ψ

∂t
= −Γψ

δF (ϕ, ψ)

δψ
, (4.7)

where δ/δϕ and δ/δψ denote the functional derivative with respect to the order pa-

rameters ϕ and ψ respectively. The constants Γϕ and Γψ are the phenomenological

kinetic coefficients of the system. Using the total free energy of the system discussed

above, the dynamical equations of the order parameters can be written as

∂ϕ

∂t
= Γϕ∇2

[
Aϕ− γψ − kϕ∇2ϕ

]
∂ψ

∂t
= −Γψ

[
W (αψ − βψ2 + χψ3)− γϕ− kψ∇2ψ

]
. (4.8)

The equations 4.8 can be expressed in a dimensionless form by the transformations

x → x′ =
√
ϵ

ξϕ
x, t → t′ =

ϵΓϕA

ξ2ϕ
t, where ϵ =

(
γ2

WA
− α

)
and ξϕ =

√
kϕ
A
. For conve-

nience, omitting the prime notation on the transformed spatial and time variables,



Chapter 4. Pattern formation and growth dynamics in a phase-field model 72

the dimensionless form of the dynamical equations becomes

∂ϕ

∂t
= ∇2

[
ϕ− γ

A
ψ − ϵ∇2ϕ

]
∂ψ

∂t
= −

ξ2ϕ
ϵλ2D

[
αψ − βψ2 + χψ3 − γ

W
ϕ− ϵ

ξ2ψ
ξ2ϕ
∇2ψ

]
(4.9)

where ξψ =
√

kψ
W

and λ2D =
AΓϕ
WΓψ

. The equations 4.9 are non-linear coupled partial

differential equations, and the analytical solutions of these dynamical equations are

not known. We, therefore, performed numerical studies to investigate the growth

dynamics of the system governed by these equations. We also performed the linear

stability analysis of these equations to study the unstable modes of the system.

4.3 Linear stability analysis

The linear stability analysis is generally performed by giving small perturbations

to the system about a fixed point and linearizing the non-linear paritial differential

equations. Therefore, we write ϕ(r⃗, t) = ϕ∗ + δϕ(r⃗, t) and ψ(r⃗, t) = ψ∗ + δψ(r⃗, t)

where (ϕ∗, ψ∗) denotes a fixed point of the system. The equations 4.9 in our model

are linearised about the fixed point (ϕ∗ = 0, ψ∗ = 0). Then, the linear dynamical

equations for the small perturbations δϕ(r⃗, t) and δψ(r⃗, t) are

∂δϕ

∂t
= ∇2

[
δϕ− γ

A
δψ − ϵ∇2δϕ

]
∂δψ

∂t
= −

ξ2ϕ
ϵλ2D

[
αδψ − γ

W
δϕ− ϵ

ξ2ψ
ξ2ϕ
∇2δψ

]
. (4.10)

Assuming the solution of the above two equations in the form δϕ = δϕ0e
σteiq⃗·r⃗ and
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δψ = δψ0e
σteiq⃗·r⃗, we obtain

σδϕ0e
σteiq⃗·r⃗ =

[
− (q2 + ϵq4)δϕ0 +

γ

A
q2δψ0

]
eσteiq⃗·r⃗

σδψ0e
σteiq⃗·r⃗ = −

ξ2ϕ
ϵλ2D

[
αδψ0 −

γ

W
δϕ0 + ϵ

ξ2ψ
ξ2ϕ
q2δψ0

]
eσteiq⃗·r⃗

or

σδϕ0 = −(ϵq4 + q2)δϕ0 +
γ

A
q2δψ0

σδψ0 =
ξ2ϕ
ϵλ2D

γ

W
δϕ0 −

ξ2ϕ
ϵλ2D

[
α + ϵ

ξ2ψ
ξ2ϕ
q2
]
δψ0.

These equations can be represented as the eigenvalue equation

B

δϕ0

δψ0

 = σ

δϕ0

δψ0

 ,

where

B =

−(q2 + ϵq4) γ
A
q2

γξ2ϕ
ϵWλ2D

− ξ2ϕ
ϵλ2D

[
α + ϵ

ξ2ψ
ξ2ϕ
q2
]
 .

The eigenvalues of the matrix B can be determined from the equation σ2−τσ+∆ = 0,

where τ = tr(B) and ∆ = det(B). The trace τ and determinant ∆ are given by

τ = −(q2 + ϵq4)−
ξ2ϕ
ϵλ2D

(
α + ϵ

ξ2ψ
ξ2ϕ
q2
)

(4.11)

∆ =
ξ2ϕ
ϵλ2D

(
q2 + ϵq4

)(
α + ϵ

ξ2ψ
ξ2ϕ
q2
)
−

γ2ξ2ϕ
ϵWAλ2D

q2 . (4.12)

The eigenvalues σ± = τ±
√
τ2−4∆
2

can be complex in general. If the real part of any of

these eigenvalues is positive, the corresponding mode grows with time (∼ eσt), and

the fixed point is unstable. On the other hand, the fixed point is stable if the real
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part of both the eigenvalues is negative.

It is found that in our system τ becomes negative for α ≥ 0 and hence the real part

of σ− is negative for all values of q. Thus, the modes corresponding to the eigenvalue

σ− are stable. On the other hand, the real part of the eigenvalue σ+ becomes positive

if ∆ < 0. Thus the modes corresponding to σ+ are unstable. It can be shown from

the equation 4.12 that ∆ becomes negative in the range 0 < q < qmax where qmax can

be obtained by solving the equation

ϵ
ξ2ψ
ξ2ϕ
q4 +

(
α +

ξ2ψ
ξ2ϕ

)
q2 − 1 = 0. (4.13)

The expression of qmax relevant to our analysis is given by

qmax =
1√
2ϵ

[√
4ϵξ2ϕ
ξ2ψ

+
(
1 +

αξ2ϕ
ξ2ψ

)2

−
(
1 +

αξ2ϕ
ξ2ψ

)]1/2
. (4.14)

In the case of α < 0, it can be shown from equation 4.11 that τ is positive for small

values of q and becomes negative for large values of q. Hence, the growth rate σ+ = τ

is a positive quantity for q = 0, and it becomes zero at q = qmax. As ∆(qmax) = 0, the

expression 4.14 of qmax is valid for both positive and negative values of α. For both

cases, the fastest growing mode q = qc can be found by maximising σ+ with respect

to q, which will be the most dominant mode in the system.

Figure 4.1 shows the typical variation of the growth rate σ as a function of the

wave vector q for different values of the model parameter α. For low values of α < 0,

the growth rate is maximum at qc = 0 as shown in figure 4.1 (a). Then, qc becomes

non-zero and increases with increasing value of α. Whereas for positive values of

α, the wave vector qc is always a non-zero quantity, and it increases with increasing

values of α (see figure 4.1 (b)). The non-zero values of qc, therefore, determine the

periodicity of the spatial patterns formed after the instability. In the following, we

consider mostly the positive values of α to ensure the non-zero value of qc. The
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positive values of α have also been assumed in other studies accounting for banded

spherulitic growth [27, 29].

Figure 4.1: The variation of growth rate σ as a function of the wave vector q for
different values of α (a) −0.1 ≤ α ≤ −0.067 and (b) −0.05 ≤ α ≤ 0.025 . The
modes in the wave vector range 0 < q < qmax have positive values of σ+ and hence
are unstable. The values of the other parameters are γ/A = 0.2236, W/A = 0.1,
ξψ/ξϕ = 3.1623, and ξ2ϕ/λ

2
D = 0.5.

The wavelength corresponding to the fastest growing mode λ in the units of the

length ξϕ is given by

λ =
2π

qc
√
ϵ
, (4.15)

which can be compared with the experimentally measured periodicity of the patterns

[28]. It can be seen from the equation 4.15 that λ diverges at ϵ = 0 corresponding to

α = γ2/WA. We showed that this divergence of λ is a manifestation of the singularity

of the governing TDGL equations [28]. The singularity of the model is associated with

the reduction of the number of time-dependent equations, which can be understood

by putting ϵ = 0 in the equation 4.9. It can be shown from equations 4.11 and 4.12

that the wave vector qc depends on the model parameters α, ξϕ/λD, ξψ/ξϕ, γ/A and

W/A and it is independent of β and χ. Therefore, the nature of the phase transition

determined by the parameter β does not impact the selection of the wavelength λ.

Figure 4.2 presents the variation of λ and its growth rate (i.e., σ = σ+
max) as a
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function of α. The wavelength λ initially decreases and shows a broad minimum at

about α = 0.1 and then increases monotonically with increasing values of α. It shows

a divergence at higher values of α on approaching ϵ = 0, as pointed out earlier. On

the other hand, the growth rate σ decreases monotonically with increasing values of

α.

Figure 4.2: The variation of wavelength and growth rate corresponding to the fastest
instability mode (qc) as a function of α. The values of the other parameters are
γ/A = 0.2236, W/A = 0.1, ξψ/ξϕ = 3.1623, ξ2ϕ/λ

2
D = 0.5.
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Figure 4.3: Three dimensional (3D) plots (a) and (c) of the length scale λ and its
growth rate σ+

max, respectively, as a function of two model parameters α and ξϕ/λD.
Other model parameters are γ/A = 0.7071, W/A = 1.0, and ξψ/ξϕ = 1.0. The
2D projections of these 3D plots are (b) and (d), respectively, where the color bars
represent the value of λ and σmax in the logarithmic scale.

We now present the variation of the wavelength corresponding to the fastest-

growing mode and its growth rate with different model parameters. Figure 4.3 (a)

and (c) show the 3D plot of λ and σ+
max as a function of the parameters α and ξϕ/λD

respectively, whereas figure 4.3 (b) and (d) show the color-coded representations of

these variables. As can be seen from figure 4.3 (a), λ diverges with increasing values

of α for a given value of ξϕ/λD as discussed earlier. This trend remains almost

independent of ξϕ/λD except for very low values of ξϕ/λD where λ slightly increases

with decreasing values of ξϕ/λD. Similarly, σmax shows corresponding behaviour as
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shown in figure 4.3 (c). It should be noted that the ξϕ/λD is related to the kinetic

coefficients (Γϕ,Γψ), which, therefore, weakly control the dynamics of the unstable

modes.

Figure 4.4: Three dimensional (3D) plots (a) and (c) of the length scale λ and its
growth rate σ+

max, respectively, as a function of two model parameters α and ξψ/ξϕ.
Other model parameters are γ/A = 0.7071, W/A = 1.0 and ξ2ϕ/λ

2
D = 5.0. The

2D projections of these 3D plots are (b) and (d), respectively, where the color bars
represent the value of λ and σmax in the logarithmic scale.

Figure 4.4 presents the variation of λ and σ+
max as a function of α and ξψ/ξϕ. The

variations of λ and σmax with respect to α strongly depend on the chosen values of

ξψ/ξϕ. For large values of ξψ/ξϕ, λ varies rapidly with α compared to that for low

values of ξψ/ξϕ as shown in figure 4.4 (a). On the other hand, σ+
max shows the opposite

trend as shown in figure 4.4 (c). It should be noted that ξψ/ξϕ depends on the ratio
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of the elastic constants associated with the spatial variation of the order parameters

ψ and ϕ, respectively. The increasing λ with the increasing values of ξψ/ξϕ arises

due to the higher elastic energy cost associated with the spatial variation of the order

parameter ψ.

Figure 4.5: Three dimensional (3D) plots (a) and (c) of the length scale λ and its
growth rate σ+

max, respectively, as a function of two model parameters γ/A and ξψ/ξϕ.
Other model parameters are α = 0.175, W/A = 1.0 and ξ2ϕ/λ

2
D = 5.0. The 2D

projections of these 3D plots are (b) and (d), respectively, where the color bars
represent the value of λ and σmax in the logarithmic scale.

Figure 4.5 (a) and (c) present the variation of λ and σ+
max as a function of γ/A and

ξψ/ξϕ, respectively whereas figure 4.5 (b) and (d) show the color-coded representations

of these variables on the γ/A−ξψ/ξϕ parameter plane. As can be seen from figure 4.5

(a), λ increases with decreasing values of γ/A for a given value of ξψ/ξϕ. On the other
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hand, σ+
max shows the opposite trend as shown in figure 4.5 (c). It is found that for

large values of ξψ/ξϕ, λ and σ+
max vary rapidly with γ/A compared to those for low

values of ξψ/ξϕ.

The linear stability analysis shows that the region of higher (lower) wavelength

λ corresponds to the lower (higher) values of growth rate σ+
max. The length scale

λ strongly depends on α. Generally, the parameter α is a temperature-dependent

quantity, and hence, it can be associated with the supercooling of the system. The

effect of α on the pattern formation has been experimentally studied by changing the

supercooling of the system[27–29]. On the other hand, the parameters γ/A and ξψ/ξϕ

can be tuned easily by changing the concentration of materials in a multi-component

system. However, the effect of these two model parameters on pattern formation has

not been reported in the literature. We showed theoretically that λ also depends

strongly on the model parameters γ/A and ξψ/ξϕ. It should be noted that the linear

stability analysis can not provide the full dynamics of the system as it deals with

the assumption of small perturbations and linearised equations. Therefore, we solved

the full non-linear TDGL equations for different values of these model parameters to

study the pattern formation.

4.4 Numerical Studies

For numerical solutions, we introduce an additional auxiliary variable µ and the

TDGL equations 4.9 can be written as

∂ϕ

∂t
= ∇2µ (4.16)

µ = ϕ− γ

A
ψ − ϵ∇2ϕ (4.17)

∂ψ

∂t
= −

ξ2ϕ
ϵλ2D

[
αψ − βψ2 + χψ3 − γ

W
ϕ− ϵ

ξ2ψ
ξ2ϕ
∇2ψ

]
. (4.18)
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These equations were solved numerically in two dimensions with no flux boundary

conditions

∇⃗ϕ · n̂|∂Ω = 0 (4.19)

∇⃗ψ · n̂|∂Ω = 0 (4.20)

∇⃗µ · n̂|∂Ω = 0 , (4.21)

where ∂Ω represents the boundary. The last boundary condition arises from the

conservation law of the order parameter ϕ. The finite difference method for both space

and time was used for the discretization of these equations. The Laplace operators

were discretized based on second-order central differences. The spatial step size was

chosen as dx = dy = 1.0. Initially, a single nucleus was put at the center of the

square lattice by considering ψ(r⃗) = exp(−0.1r2) where r is the radial distance of a

point from the center and ϕ was taken as zero everywhere. A similar Gaussian profile

has also been used in the literature to trigger the nucleation event in the numerical

simulation of crystallization [30]. Following earlier studies accounting for banded

spherulitic growth [27, 29], we consider β = 1 + α where α > 0 and χ = 1 in most

of the simulations. We have also performed the simulation for α = −0.1 and β = 0

corresponding to a continuous phase transition.

We now present the numerical solutions of the two order parameters ϕ and ψ for

different values of the model parameters. Figure 4.6 (a) and (b) show the typical ring

banded patterns obtained from numerical simulations for the model parameter β ̸= 0

and β = 0, respectively. The ring-banded pattern grows from the center with periodic

variation of the order parameters ϕ and ψ along the radial directions, forming circular

bands. For β ̸= 0, the left and middle panes of figure 4.6 (a) show the two-dimensional

variation of ϕ and ψ, respectively, using a color map. In this case, the radius of the

ring-banded pattern increases in a step-like fashion with time, giving rise to the non-
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uniform growth dynamics, as shown in the right pane of figure 4.6(a). Despite the

non-linear variation of the radius with time for each individual step, the radius shows,

on average, a linear growth law with time. This type of non-linear growth dynamics

is known as rhythmic growth. The free energy density also varies rhythmically with

time, as shown in the right pane of figure 4.6(a). Similar ring-banded patterns with

rhythmic growth have also been found in earlier studies [27, 29].

Figure 4.6: The left and middle panes representing the color-coded variation of the
order parameters ϕ and ψ for the ring-banded patterns, whereas the right pane
indicating the variation of the free energy density and radius of the ring-banded
patterns with time. The model parameters used are (a)γ/A = 0.65, ξψ/ξϕ = 1.20,
α = 0.175, β = 1 + α, χ = 1.0,W/A = 1.0, ξ2ϕ/λ

2
D = 5.0 and (b)γ/A = 1.0, ξψ/ξϕ =

0.3, α = −0.1, β = 0, χ = 1.0,W/A = 2.0, ξ2ϕ/λ
2
D = 20.0. The time step is chosen as

dt = 0.01.

In the case of β = 0 corresponding to the continuous phase transition, similar

ring-banded patterns of the order parameters ϕ and ψ were found as shown in the

left and middle panes of figure 4.6 (b) respectively. However, in this case, the system

exhibits a noisy linear variation of the radius of the ring-banded pattern with time,

and the free energy density also decreases smoothly with time, as shown in the right
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pane of figure 4.6(b). Therefore, the rhythmic growth of the ring-banded patterns

was not found in this case. It should be noted that the coefficient (β) of the cubic

term of the order parameter ψ in the free energy density determines the nature of the

phase transition. Therefore, the order of the underlying phase transition can affect

the growth dynamics and, even though they give rise to apparently similar-looking

ring-banded patterns.

The formation of the ring-banded pattern can be understood from the TDGL

equations as follows. The ring-banded pattern starts to grow from a seed (where

ψ > 0) from the center. Subsequently, ψ at the seed increases to minimize the free

energy of the system. This increase in ψ at the seed tends to enhance the conserved

order parameter ϕ due to their bi-linear coupling. The order parameter ϕ decreases

around the seed to obey the conservation rule. A sufficient reduction of ϕ produces

a region of lower ψ due to the same bi-linear coupling. In turn, this lower region

promotes the building of another region corresponding to higher values of ϕ and ψ.

Thus, the growth continues in a repetitive fashion and produces the ring-banded

structure.
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Figure 4.7: The left and middle panes representing the color-coded variation of the
order parameters ϕ and ψ for the broken ring patterns, whereas the right pane in-
dicating the variation of the free energy density and radius of the broken ring pat-
terns with time. The model parameters used are (a) γ/A = 0.55, ξψ/ξϕ = 0.75, and
(b)γ/A = 0.5, ξψ/ξϕ = 0.45 where α = 0.175, β = 1 + α, χ = 1.0,W/A = 1.0, and
ξ2ϕ/λ

2
D = 5.0. The time step is chosen as dt = 0.01.

The ring-banded patterns are not the only patterns found in this system. More

complex patterns were found depending on the model parameters. Figure 4.7 shows

two such more complex broken ring patterns for certain values of the model parame-

ters. For these values of the model parameters, most of the rings of the patterns break

up into small domains, creating large interfacial areas, and hence, the azimuthal sym-

metry of the ring-banded pattern is lost. We found that the more complex patterns

occur close to ϵ = 0, which may be the manifestation of the singularity of the TDGL

model [28]. The size of the growth front increases with time in a noisy staircase-type

manner where the free energy density can show either a noisy rhythmic or a smooth

non-linear relationship with time, as shown in the right panes of figure 4.7. Similar

types of broken ring patterns have also been found in polymer blend system [29].
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It is found that for some parameter values, the system depicts continuous pat-

terns, as shown in figure 4.8. In the continuous pattern, the initial seed continuously

increases its size. A circular interface separates two phases corresponding to ψ = 0

and ψ = 1. The conserved order parameter ϕ is almost zero everywhere. Both the

radius of the domain and the free energy density of the system vary smoothly with

time, giving rise to the non-rhythmic growth dynamics as shown in the right pane

of figure 4.8. This type of continuous pattern has been found experimentally in a

polymer blend system [31].

Figure 4.8: The left and middle panes representing the color-coded variation of the
order parameters ϕ and ψ for a continuous pattern, whereas the right pane indicating
the variation of the free energy density and radius of the continuous pattern with
time. The model parameters used are γ/A = 0.50, ξψ/ξϕ = 1.80, α = 0.175, β =
1 + α, χ = 1.0,W/A = 1.0, and ξ2ϕ/λ

2
D = 5.0. The time step is chosen as dt = 0.01.

It should be noted that the radius of these three types of patterns grows on

average linearly with time. Therefore, the free energy density decreases on average

quadratically with time as the free energy density is proportional to the area of the

patterns. It is well known that the linear growth dynamics and circular growth fronts

are the essential properties of spherulitic growth in a quasi-two-dimensional system.

So, the ring banded, broken ring, and continuous patterns are often associated with

the experimentally observed spherulitic structures [27–29, 31].
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Figure 4.9: The stability diagram in the γ/A - ξψ/ξϕ parameter plane representing the
regions of the stability of the different patterns such as ring banded, broken ring and
continuous patterns for the model parameters α = 0.175, β = 1 + α, χ = 1.0,W/A =
1.0 and ξ2ϕ/λ

2
D = 5.0. The color bar denotes the fastest-growing instability length

scale λ obtained from LSA. The dotted and dashed lines are schematically drawn to
represent the stability boundaries.

The stability of these patterns in the parameter plane of γ/A and ξψ/ξϕ is shown

in figure 4.9. The wavelength λ corresponding to the fastest-growing mode obtained

from LSA is also indicated by a color map in this figure. For high values of ξψ/ξϕ,

it is found that the circular domain grows continuously without any undulation of

the order parameters (see figure 4.8). In this region of the parameter plane, the

wavelength λ corresponding to the fastest-growing mode obtained from LSA tends to

infinity as expected. The broken ring patterns, as shown in figure 4.7 are observed
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for low values of both the parameters ξψ/ξϕ and γ/A. The ring-banded patterns are

stable for high values of γ/A but for moderate values of ξψ/ξϕ. The values of the

wavelength λ corresponding to the broken ring and ring-banded patterns are found

to be of the same order, and our LSA does not differentiate these patterns. The

stability boundaries of these patterns are schematically indicated by the dashed and

a continuous lines in figure 4.9.

Figure 4.10: The color-coded representation of the order parameters ϕ and ψ for
the intermediate patterns. The model parameters used are (a)γ/A = 0.45, ξψ/ξϕ =
1.25,(b) γ/A = 0.5, ξψ/ξϕ = 1.15,(c)γ/A = 0.6, ξψ/ξϕ = 1.27 , (d) γ/A = 0.75, ξψ/ξϕ =
1.55, and (e) γ/A = 0.75, ξψ/ξϕ = 1.56 where α = 0.175, β = 1 + α, χ = 1.0,W/A =
1.0, and ξ2ϕ/λ

2
D = 5.0. (f) The variation of the free energy density of these interme-

diate patterns with time. The graphs 1, 2, 3, 4 and 5 correspond to the patterns
(a),(b),(c),(d) and (e) respectively. The time step is chosen as dt = 0.001.

However, near these stability boundaries, very different intermediate types of pat-

terns are observed as one crosses these boundary lines. For example, figure 4.10 shows

some of these intermediate patterns near the dashed line of figure 4.9. Most of these

patterns are found to grow with a fourfold symmetry. For the parameter γ/A = 0.45
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and ξψ/ξϕ = 1.25, a crossed pattern is observed as shown in figure 4.10(a). It is found

that the length of the arms of this pattern continues to grow with time, whereas

the breadth remains almost constant. The free energy density of the system linearly

decreases at long times, as shown by the graph 1 of figure 4.10(f) which implies the

linear growth of the arms of the crossed pattern. Remaining close to the dashed line

but with slightly higher values of γ/A, the crossed pattern with additional struc-

tures is found as shown in figure 4.10(b). In this case, the graph 2 of figure 4.10(f)

shows the decrease in the free energy density with time. The change in the slope of

the linear variation is associated with the formation of these additional structures.

For even higher values of γ/A, we find a complex pattern morphology, as shown in

figure 4.10(c). For this pattern, it is found that the free energy density decreases

quadratically with time, as can be seen in the graph 3 of figure 4.10(f). For relatively

large values of γ/A, the circular domain grows continuously with a central pattern as

shown in figure 4.10(d) and (e). It is found that small change in the model parameters

leads to noticeable differences in these patterns. For these patterns, the free energy

density also decreases quadratically with time, as can be seen in the graphs 4 and 5

of figure 4.10(f). The quadratic decrease in the free energy density can be associated

with the quadratic increment of the area of the pattern with time. Therefore, the

size of these intermediate patterns grows linearly with time, similar to the spherulitic

growth. However, these intermediate patterns have not yet been observed in any ex-

perimental system, and it will be interesting to explore these theoretical predictions

in future studies.

4.5 Summary

We have studied the pattern formation using a time-dependent Ginzburg-Landau

theory consisting of a conserved and a non-conserved order parameters. The linear
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stability analyses of the model have been performed for different values of the model

parameters. It is found that the wavelength corresponding to the faster-growing

mode strongly depends on some model parameters. We have also performed numerical

computations to find the solutions of the fully non-linear equations. Depending on the

values of the model parameters, the simulations exhibit mostly ring-banded, broken-

ring, and continuous patterns. The radius of these patterns increases on average

linearly with time. But for some parameter values, the radius of the pattern is found

to increase in a step-like fashion superposed on the average linear growth. This type of

growth dynamics is known as rhythmic growth. We have also constructed a stability

diagram of these patterns on a parameter plane of the model. Furthermore, various

intermediate patterns are found near the stability boundaries of these patterns.
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Chapter 5

Formation of banded spherulite by

rhythmic growth

In the previous chapter, a phase field model with a conserved and a non-conserved

order parameters has been discussed. In this model, the dynamics of the order pa-

rameters are governed by the time-dependent Ginzburg-Landau model C equations.

We have shown that various types of patterns can form depending on the model pa-

rameters. We have employed this model to account for the banded spherulitic growth

observed experimentally in our laboratory for the liquid crystalline compound 8OCB

during its crystallization from the smectic A phase. In this chapter, we show that

this model can describe the banded spherulitic growth observed in this system. This

is the first report of the rhythmic growth-assisted banded spherulite formation in a

small molecular system.

5.1 Introduction

Primarily, during solidification, a solid phase, after nucleation from its melts, starts

to grow anisotropically and attains a faceted growth front. This faceted growth front

95
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Figure 5.1: The polarised optical microscope (POM) images of a continuous spherulite
of 8OCB (a) between crossed polarisers and (b) with a λ-plate inserted in the optical
path in addition to the crossed polarisers. The direction of the major refractive
index in the sample plane is denoted by white double-headed arrows around the seed.
The dark arms of the Maltese cross parallel to the polarisers remain invariant in the
rotation of the sample between the crossed polarisers.

results as a consequence of the discrete point symmetry of the underlying crystal

structure. In contrast, some materials are found to exhibit a spherical growth front

during crystallization. This spherical growth front is thought to arise due to the poly-

crystalline aggregated structures of the underlying solid phase. These self-assembled

polycrystalline structures are called spherulites. Initially, the spherulites were known

as “circular crystals” for their circular boundary in quasi-two dimensional geometry,

which was renamed later to spherulite [1]. The spherulitic growth has been com-

monly observed in nature during the solidification of a wide variety of materials such

as polymers [2, 3], minerals [4–6], elements [7, 8], metals [9], and salts [10–12]. It is

also often found in biological materials like coral skeletons [13], kidney stones [14],

proteins [15–17], and urinary sediments [18]. A large number of experimental studies

over a century confirm that the spherulitic growth morphology is often associated with

the formation of many radially aligned fibrillar crystallites, which exhibit noncrystal-

lographic branching to fill space during the growth [19]. This distinct characteristic

of spherulites separates them from the other polycrystalline aggregates. Despite a

large number of studies, the detailed theoretical as well as experimental understand-
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ing of the mechanism of this abundantly found natural growth phenomenon is still

incomplete [9].

Figure 5.2: The polarised optical microscope (POM) images of a banded spherulite
of 8OCB (a) between crossed polarisers and (b) with a λ-plate inserted in the optical
path in addition to the crossed polarisers. The direction of the major refractive index
in the sample plane is denoted by white double-headed arrows around the seed.

The polarising optical microscopic texture of a spherulite for 8OCB liquid crystal

grown between two parallel glass plates is shown in figure 5.1. The texture exhibits a

Maltese cross parallel to the crossed polarizers, which indicates the radial alignment

of the crystalline fibrils. It has also been observed that the radius of the growing

spherulite varies linearly with time.

Figure 5.3: Schematic representation of coherent twisting of fibrils in a banded
spherulite
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In addition to these continuous spherulites, a kind of spherulite known as banded

spherulite has also been observed [2, 3, 20–27]. A banded spherulite is accompanied

by a spherically symmetric growth front and periodic radial variation of birefringence.

This variation of birefringence in quasi-two-dimensional geometry produces concentric

interference color bands when viewed through crossed polarizers. Figure 5.2 shows

the texture of a banded spherulite for 8OCB liquid crystal between crossed polariz-

ers. Over the past decades, a theoretical model with the coherent periodic twisting

of radially aligned fibrillar crystallites has been proposed to account for these banded

spherulites [2, 3]. The coherent periodic twisting of radially aligned fibrillar crystal-

lites produces a periodic change of effective birefringence along the radial direction,

giving rise to the concentric color bands observed in polarizing optical microscopic

textures. Figure 5.3 schematically depicts banded spherulite with coherently twisted

fibrillar structures. The twisting of the fibrils can arise due to several causes such as

surface stress mismatch [2, 20], iso-chiral screw dislocation [28, 29], auto deformation

[9], self-induced concentration or mechanical fields on growth kinetics [30], and topo-

logical defects [31]. The organized twisting of the fibrillar crystallites is considered to

be a primary mechanism for the formation of the banded spherulites.
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Figure 5.4: (a) The scanning electron microscopic image of a banded spherulitic
region showing the presence of alternating fibrous nano-crystallite rich domains and
amorphous domains. (b) The fluorescent image of a dye-doped banded spherulitic
region. The regions marked “A” and “B” represent the concentric crystallite-rich and
crystallite-poor bands, respectively.

Recently, we have reported detailed studies on the banded spherulitic growth of

the solid phase for the small molecular rodlike liquid crystalline compound 8OCB

[32]. The compound exhibits the banded spherulitic growth during the solidification

from its Smectic A phase. The banded spherulitic domains were studied using a va-

riety of experimental techniques such as polarising microscopy, Raman spectroscopy,

Xray diffraction analysis, confocal microscopy, dielectric spectroscopy, and scanning

electron microscopy (SEM) [32]. These studies reveal that the banded spherulitic

domains are composed of two solid phases, namely, the fibrillar nano-crystallites and

a solid amorphous phase. The existence of the two phases can be easily seen in

the SEM micrograph as shown in figure 5.4. The crystallite-rich and crystallite-

poor zones are marked as A and B, respectively, in this figure. The crystallite-rich

zone is primarily associated with the higher density of radially aligned fibrillar nano-

crystallites, whereas the crystallite-poor zone contains fewer fibrillar nano-crystallites

and is mostly filled with the solid amorphous phase. The alternation of these concen-

tric zones along the radial direction of the spherulite produces the radial undulation

of the effective birefringence. This periodic variation of effective birefringence gives
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rise to the concentric interference color bands observed between crossed polarizers. It

should be noted that the twisting of the fibrillar nano-crystallites was not observed in

this system. Therefore, the coherent twisting model discussed above [2, 3, 9, 20, 28–31]

is not suitable for the description of banded spherulite of this achiral liquid crystalline

compound.

We, therefore, develop a time-dependent Landau-Ginzburg model C to account

for the banded spherulitic growth observed in 8OCB liquid crystal. We have com-

pared the periodicity obtained from the linear stability analysis (LSA) with the ex-

perimentally measured band spacing of the banded spherulite for different values of

supercooling. The good agreement between the theoretical results and experimental

data confirms the general validity of this model. We have also performed numeri-

cal studies of the full nonlinear equations to investigate the growth dynamics of the

banded spherulite. The simulation results on this system show ring-banded pattern

formation with rhythmic growth of the radius as a function of time. The computed

band spacing obtained from simulations as a function of supercooling also agrees very

well with the experimental findings. Interestingly, it is experimentally observed that

the band spacing diverges at a particular supercooling when approaching this value

from below. This divergence of band spacing has also been reported for some other

materials [2]. However, the previous theoretical models for the banded spherulites

did not account for this observation. For the first time, our model correctly captures

this observation in both the LSA and simulations.

5.2 Model

We have developed a time-dependent Ginzburg-Landau (TDGL) model C for describ-

ing the banded spherulitic growth in the 8OCB liquid crystal. It is experimentally

found in our system that the bands in the spherulite arise due to the alternating
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concentric crystallite-rich and crystallite-poor amorphous zones. Armed with this re-

sult, we define a conserved order parameter ϕ and a non-conserved order parameter ψ

to describe the banded spherulitic growth using the TDGL model C. The conserved

order parameter

ϕ =
ρ− ρ0
ρ0

describes the local deviation of density in these zones from the average density ρ0

of the smectic A phase. Clearly, the order parameter ϕ is conserved given by the

mathematical expression ∫
V

ϕ(r⃗, t)d3r⃗ = 0

where V denotes the volume of the system. On the other hand, the non-conserved

order parameter ψ takes into account the local compositional difference between the

nano-crystalline and amorphous solid phases of the system. Therefore, the non-

conserved order parameter can be defined as

ψ =
ρnc − ρa
ρ0

where ρnc/ρ0 and ρa/ρ0 are the fractional densities of molecules in the nano crystalline

and amorphous solid phase, respectively. The smectic phase with ψ = 0 undergoes a

first-order transition to the spherulitic domain with ψ ̸= 0.

The free energy density of the system in its smectic phase can be expressed as

f =
A

2
ϕ2 +

1

2
kϕ|∇ϕ|2 +W

[α(T )
2

ψ2− 1 + α(T )

3
ψ3 +

1

4
ψ4

]
+

1

2
kψ|∇ψ|2− γϕψ. (5.1)

The first two terms in equation 5.1 represent the free energy density corresponding

to the order parameter ϕ. It is assumed that the conserved order parameter ϕ is

non-critical across the transition to the spherulitic state, and only the terms up to

the quadratic order are retained with the coefficients A and kϕ greater than zero.
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The third and fourth terms describe the free energy density associated with the order

parameter ψ accounting for the first-order phase transition from the smectic phase

to the spherulitic state. The last term in equation 5.1 is the lowest order bilinear

coupling between these order parameters.

Here, 0 ≤ α(T ) ≤ 1 is the only temperature-dependent parameter driving this

first-order transition. As usual in the Landau theory, the parameter α(T ) is assumed

to be linearly dependent on temperature as α = δ(T − Tc). The melting temperature

of 8OCB is 327.6 K, and the smectic phase is absolutely stable above this temperature.

Hence, we have considered that α takes the maximum value one at this temperature

Tm = 327.6 K. We have assumed the temperature Tc = 273.1 K denoting the lower

limit of stability of the smectic phase which is difficult to find experimentally due to

the large range of supercooling of the smectic phase. This temperature-dependent

parameter becomes

α(T ) = (T − Tc)/(Tm − Tc)

where Tm and Tc are the melting temperature and supercooling limit of the smectic

phase, respectively. We define the supercooling from the melting temperature Tm as

∆T = Tm − T .

The free energy density given by equation 5.1 is similar to the free energy density

discussed in the previous chapter (equation 4.1) with the model parameters β =

1+ α(T ) and χ = 1. Using this free energy density expression 5.1, the dimensionless

form of the TDGL equations for the system can be written as

∂ϕ

∂t
= ∇2

[
ϕ− γ

A
ψ − ϵ∇2ϕ

]
(5.2)

ϵ
∂ψ

∂t
= −

ξ2ϕ
λ2D

[
ψ(ψ − 1)(ψ − α)− γ

W
ϕ− ϵ

ξ2ψ
ξ2ϕ
∇2ψ

]
(5.3)

where ϵ = ( γ2

WA
− α) is a dimensionless parameter. The parameters ξϕ =

√
kϕ
A
,
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ξψ =
√

kψ
W

and λD =
√

AΓϕ
ΓψW

have the dimension of length, where Γϕ and Γψ are two

dynamical coefficients of the system. The detailed derivation of these equations, the

linear stability analysis (LSA), and the finite-difference simulation scheme to solve

these model equations are described in the previous chapter. Here, we present the

results obtained from the equations 5.2 and 5.3 as a function of supercooling of the

system and compare them with the experimental findings. A similar type of phase

field model has been proposed to qualitatively account for the formation of the banded

spherulite in the polymer blends [33, 34]. However, the exploration of these models

in different systems and comparing the results with the experimental findings have

not been undertaken.

5.3 Results and discussions

The linear stability analysis of the model equations was performed to determine

modes which become unstable on increasing the supercooling of the SmA phase.

Figure 5.5(a) shows the variation of growth rate σ as a function of the wave vector

q for different values of the parameter α obtained from the linear stability analysis.

The positive value of σ defines the instability mode with the wave vector q. As can be

seen from figure 5.5(a), σ is positive for modes with wave vector q lying between zero

and qmax and these unstable modes give rise to the banded spherulite in this system.

Among these unstable modes, σ has the highest positive value for q = qc and this

unstable mode will be most dominant during the growth of the banded spherulite.

Figure 5.5(b) shows the variation of qmax and qc with the parameter α obtained

from LSA. Though qc varies strongly with α, the qmax does not vary appreciably

with it. The wavelength corresponding to the mode qc is compared with the exper-

imentally measured band spacing of the banded spherulite observed for our system.

Figure 5.5(c) shows the experimentally measured band spacing and the theoretically
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computed band spacing obtained from the LSA and simulation as a function of super-

cooling. The theoretical result agrees well with the experimental data confirming the

general validity of our model. Our theoretical results show good agreement with the

experiments for the following choice of model parameters: γ/A = 0.242, W/A = 0.1,

ξϕ = 0.04 µm, ξψ = 3.16ξϕ, λD = 1.41ξϕ.

Figure 5.5: Effect of supercooling on banded spherulite. (a) The variation of growth
rate σ with the wave vector q for different values of α. The modes in the wave vector
range 0 < q < qmax are unstable. (b) The variation of qmax and qc as a function
of α. (c) Comparison between experimental, linear stability analysis and simulation
results for the variation of band spacing with supercooling ∆T. The values of the
parameters used for the theoretical model are γ/A = 0.242, W/A = 0.1, ξϕ = 0.04
µm, ξψ = 3.16ξϕ, λD = 1.41ξϕ.

A general analytical method of finding solutions of the coupled nonlinear TDGL

equations given by equations 5.2 and 5.3 is not known. These equations were solved

numerically under no flux boundary condition using a finite difference method in two

dimensions. The numerical solutions of the order parameters ϕ and ψ for a banded

spherulite growing from a seed at the centre are shown in figure 5.6a and figure 5.6b,

respectively (also see figure 5.7). The formation of the ring-banded structure is clearly

observed as found experimentally. Figure 5.6c shows the graphical profiles of the

order parameters along a radial direction of the spherulite. The order parameters

vary periodically and in phase along the radial direction during the growth of the

spherulite. This in-phase variation of the order parameters arises due to their bilinear

coupling with γ > 0 in equation 5.1.
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Figure 5.6: Simulated banded spherulite domain. The color-coded representation
of the order parameters (a) ϕ and (b) ψ of a banded spherulite obtained from the
numerical solution of the TDGL equations at ∆T = 39.5 K. The model parameters
used are γ/A = 0.242, W/A = 0.1, ζϕ = 0.04 µm, ζψ = 3.16ζϕ, λD = 1.41ζϕ, time
step size dt = 0.01 and spatial step size dx = dy = 1.0. (c) The graphical profiles of
ϕ and ψ along a radial axis of the simulated banded spherulite.

The formation of the banded spherulite can be understood from these numerical

studies as follows. The banded spherulite grows from an initial nano-crystallite seed

nucleated on sufficient supercooling of the SmA phase. The nano-crystallites have

higher density compared to the amorphous state. Thus, the growth of this nano

crystallite-rich domain leads to a decrease in density around it due to the depletion

of the molecules. When this density decreases sufficiently; it promotes the formation

of a crystallite-poor amorphous domain around the initial crystallite-rich domain.

The growth of this crystallite-poor band in turn increases the density around its

periphery and leads to the nucleation of another nano crystallite-rich band. The
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growth continues with the formation of alternating crystallite-rich and crystallite-

poor bands in a periodic manner along the radial direction of the spherulite, as

indicated in figure 5.6.

Figure 5.7: Simulated banded spherulite patterns for different values of supercooling.
Numerical solutions of ϕ (upper row) and ψ (lower row) for different values of α (or
∆T). (a, b) α = 0.250 (∆T = 40.8 K) at 149999 time steps, (c, d) α = 0.300 (∆T =
38.1 K) at 199999 time steps, (e, f) α = 0.450 (∆T = 29.9 K) at 399999 time steps
on a 1024× 1024 square lattice.

The radius of the numerically simulated banded spherulite grows with time in a

rhythmic fashion. The staircase type growth of dimensionless radius R with dimen-

sionless time is shown in Figure 5.8. Each step represents the duration of a full band

growth. Though this growth is nonlinear at each individual step, it shows, on average,

a linear growth law with time. The growth velocity of the ring-banded pattern can

be found from this linear relationship.

The spacing between two successive bands of the spherulite was also calculated

from the numerical results for different values of supercooling ∆T. The numerically

computed band spacing as a function of supercooling agrees very well with the exper-

imental data, as shown in figure 5.5c. This figure also shows that the experimentally
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measured band spacing of the spherulite tends to diverge on approaching ∆T ∼ 22.5

K from above. Below this supercooling, only the formation of non-banded spherulites

was observed experimentally. Both the LSA and numerical results account for this

divergence of band spacing. This divergence arises from a singularity of the TDGL

equations 5.2 and 5.3 with the parameter ϵ being zero. In this case, only the order pa-

rameter ϕ controls the dynamics of the system, and ψ is determined by the equation

ψ(ψ − 1)(ψ − α) = γ
W
ϕ.

Figure 5.8: Rhythmic variation of banded spherulite radius. Numerically computed
variation of radius R of the banded spherulite with time showing its rhythmic growth
for α = 0.15 (∆T = 46.3 K). The blue line shows the average linear growth of the
spherulite with time. R and t are dimensionless quantities.

5.4 Summary

We have studied the banded spherulitic growth of the solid phase of a pure liquid

crystalline compound from its SmA, deploying a phase-field model using the time-
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dependent Ginzburg-Landau theory. The model predicts that the banded spherulites

are formed due to the rhythmic generation of concentric crystallite-rich and crystallite-

poor amorphous zones. The variation of the band spacing as a function of the su-

percooling of the SmA phase calculated from our theoretical model agrees well with

our experimental observations. Also, the model correctly accounts for the divergence

of the band spacing experimentally observed in our system. The model predicts the

rhythmic growth of the radius of the banded spherulite as a function of time.

Bibliography

[1] D. Brewster, Transactions of the Royal Society of Edinburgh 20, 607–623 (1853).

[2] B. Crist and J. M. Schultz, Progress in Polymer Science 56, 1 (2016),

ISSN 0079-6700, URL https://www.sciencedirect.com/science/article/

pii/S0079670015001288.

[3] B. Lotz and S. Z. Cheng, Polymer 46, 577 (2005), ISSN 0032-3861, URL https:

//www.sciencedirect.com/science/article/pii/S003238610400713X.

[4] G. Lofgren, American Journal of Science 274, 243 (1974), ISSN 0002-9599,

https://www.ajsonline.org/content/274/3/243.full.pdf, URL https://

www.ajsonline.org/content/274/3/243.

[5] R. Coish and L. A. Taylor, Earth and Planetary Science Letters 42, 389 (1979),

ISSN 0012-821X, URL https://www.sciencedirect.com/science/article/

pii/0012821X79900487.

[6] R. J. Kirkpatrick, American Journal of Science 274, 215 (1974), ISSN 0002-9599,

https://www.ajsonline.org/content/274/3/215.full.pdf, URL https://

www.ajsonline.org/content/274/3/215.

https://www.sciencedirect.com/science/article/pii/S0079670015001288
https://www.sciencedirect.com/science/article/pii/S0079670015001288
https://www.sciencedirect.com/science/article/pii/S003238610400713X
https://www.sciencedirect.com/science/article/pii/S003238610400713X
https://www.ajsonline.org/content/274/3/243.full.pdf
https://www.ajsonline.org/content/274/3/243
https://www.ajsonline.org/content/274/3/243
https://www.sciencedirect.com/science/article/pii/0012821X79900487
https://www.sciencedirect.com/science/article/pii/0012821X79900487
https://www.ajsonline.org/content/274/3/215.full.pdf
https://www.ajsonline.org/content/274/3/215
https://www.ajsonline.org/content/274/3/215


109 Bibliography

[7] I. Minkoff and W. C. Nixon, Journal of Applied Physics 37, 4848 (1966), https:

//doi.org/10.1063/1.1708149, URL https://doi.org/10.1063/1.1708149.

[8] J. Bisault, G. Ryschenkow, and G. Faivre, Journal of Crystal Growth 110,

889 (1991), ISSN 0022-0248, URL https://www.sciencedirect.com/science/

article/pii/002202489190647N.

[9] A. G. Shtukenberg, Y. O. Punin, E. Gunn, and B. Kahr, Chemical Reviews 112,

1805 (2012), pMID: 22103741, https://doi.org/10.1021/cr200297f, URL

https://doi.org/10.1021/cr200297f.

[10] R. Beck and J.-P. Andreassen, Crystal Growth & Design 10, 2934 (2010), https:

//doi.org/10.1021/cg901460g, URL https://doi.org/10.1021/cg901460g.

[11] Y. Oaki and H. Imai, Journal of the American Chemical Society 126, 9271

(2004), pMID: 15281817, https://doi.org/10.1021/ja048661+, URL https:

//doi.org/10.1021/ja048661+.

[12] A. Thomas, E. Rosseeva, O. Hochrein, W. Carrillo-Cabrera, P. Simon,

P. Duchstein, D. Zahn, and R. Kniep, Chemistry – A European Jour-

nal 18, 4000 (2012), https://chemistry-europe.onlinelibrary.wiley.

com/doi/pdf/10.1002/chem.201102228, URL https://chemistry-europe.

onlinelibrary.wiley.com/doi/abs/10.1002/chem.201102228.

[13] C.-Y. Sun, M. A. Marcus, M. J. Frazier, A. J. Giuffre, T. Mass, and P. U. P. A.

Gilbert, ACS Nano 11, 6612 (2017), pMID: 28564539, https://doi.org/10.

1021/acsnano.7b00127, URL https://doi.org/10.1021/acsnano.7b00127.

[14] U. Al-Atar, A. A. Bokov, D. Marshall, J. M. H. Teichman, B. D. Gates, Z.-G.

Ye, and N. R. Branda, Chemistry of Materials 22, 1318 (2010), https://doi.

org/10.1021/cm901751g, URL https://doi.org/10.1021/cm901751g.

https://doi.org/10.1063/1.1708149
https://doi.org/10.1063/1.1708149
https://doi.org/10.1063/1.1708149
https://www.sciencedirect.com/science/article/pii/002202489190647N
https://www.sciencedirect.com/science/article/pii/002202489190647N
https://doi.org/10.1021/cr200297f
https://doi.org/10.1021/cr200297f
https://doi.org/10.1021/cg901460g
https://doi.org/10.1021/cg901460g
https://doi.org/10.1021/cg901460g
https://doi.org/10.1021/ja048661+
https://doi.org/10.1021/ja048661+
https://doi.org/10.1021/ja048661+
https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201102228
https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201102228
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201102228
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201102228
https://doi.org/10.1021/acsnano.7b00127
https://doi.org/10.1021/acsnano.7b00127
https://doi.org/10.1021/acsnano.7b00127
https://doi.org/10.1021/cm901751g
https://doi.org/10.1021/cm901751g
https://doi.org/10.1021/cm901751g


Chapter 5. Formation of banded spherulite by rhythmic growth 110

[15] P. S. Chow, X. Y. Liu, J. Zhang, and R. B. H. Tan, Applied Physics Letters 81,

1975 (2002), https://doi.org/10.1063/1.1506208, URL https://doi.org/

10.1063/1.1506208.

[16] J. E. Coleman, B. J. Allan, and B. L. Vallee, Science 131, 350 (1960), https:

//www.science.org/doi/pdf/10.1126/science.131.3397.350, URL https:

//www.science.org/doi/abs/10.1126/science.131.3397.350.

[17] M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dob-

son, and A. M. Donald, Proceedings of the National Academy of Sciences

101, 14420 (2004), ISSN 0027-8424, https://www.pnas.org/content/101/40/

14420.full.pdf, URL https://www.pnas.org/content/101/40/14420.

[18] F. Catalina and L. Cifuentes, Science 169, 183 (1970), https://www.science.

org/doi/pdf/10.1126/science.169.3941.183, URL https://www.science.

org/doi/abs/10.1126/science.169.3941.183.

[19] H. D. Keith and F. J. Padden, Journal of Applied Physics 34, 2409 (1963),

https://doi.org/10.1063/1.1702757, URL https://doi.org/10.1063/1.

1702757.

[20] H. Keith and F. Padden, Polymer 25, 28 (1984), ISSN 0032-3861, URL https:

//www.sciencedirect.com/science/article/pii/0032386184902647.

[21] A. G. Shtukenberg, X. Cui, J. Freudenthal, E. Gunn, E. Camp, and

B. Kahr, Journal of the American Chemical Society 134, 6354 (2012), pMID:

22413815, https://doi.org/10.1021/ja300257m, URL https://doi.org/10.

1021/ja300257m.

[22] W. Pisula, M. Kastler, D. Wasserfallen, T. Pakula, and K. Müllen, Journal

of the American Chemical Society 126, 8074 (2004), pMID: 15225022, https:

//doi.org/10.1021/ja048351r, URL https://doi.org/10.1021/ja048351r.

https://doi.org/10.1063/1.1506208
https://doi.org/10.1063/1.1506208
https://doi.org/10.1063/1.1506208
https://www.science.org/doi/pdf/10.1126/science.131.3397.350
https://www.science.org/doi/pdf/10.1126/science.131.3397.350
https://www.science.org/doi/abs/10.1126/science.131.3397.350
https://www.science.org/doi/abs/10.1126/science.131.3397.350
https://www.pnas.org/content/101/40/14420.full.pdf
https://www.pnas.org/content/101/40/14420.full.pdf
https://www.pnas.org/content/101/40/14420
https://www.science.org/doi/pdf/10.1126/science.169.3941.183
https://www.science.org/doi/pdf/10.1126/science.169.3941.183
https://www.science.org/doi/abs/10.1126/science.169.3941.183
https://www.science.org/doi/abs/10.1126/science.169.3941.183
https://doi.org/10.1063/1.1702757
https://doi.org/10.1063/1.1702757
https://doi.org/10.1063/1.1702757
https://www.sciencedirect.com/science/article/pii/0032386184902647
https://www.sciencedirect.com/science/article/pii/0032386184902647
https://doi.org/10.1021/ja300257m
https://doi.org/10.1021/ja300257m
https://doi.org/10.1021/ja300257m
https://doi.org/10.1021/ja048351r
https://doi.org/10.1021/ja048351r
https://doi.org/10.1021/ja048351r


111 Bibliography

[23] X. Cui, A. L. Rohl, A. Shtukenberg, and B. Kahr, Journal of the American

Chemical Society 135, 3395 (2013), pMID: 23425247, https://doi.org/10.

1021/ja400833r, URL https://doi.org/10.1021/ja400833r.

[24] A. Shtukenberg, J. Freundenthal, E. Gunn, L. Yu, and B. Kahr, Crystal Growth

& Design 11, 4458 (2011), https://doi.org/10.1021/cg200640g, URL https:

//doi.org/10.1021/cg200640g.

[25] T.-F. Lin, R.-M. Ho, C.-H. Sung, and C.-S. Hsu, Chemistry of Materials 18,

5510 (2006), https://doi.org/10.1021/cm061666g, URL https://doi.org/

10.1021/cm061666g.

[26] J. L. Hutter and J. Bechhoefer, Phys. Rev. Lett. 79, 4022 (1997), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.79.4022.

[27] J. L. Hutter and J. Bechhoefer, Journal of Crystal Growth 217, 332 (2000),

ISSN 0022-0248, URL https://www.sciencedirect.com/science/article/

pii/S0022024800004796.

[28] A. Toda, T. Arita, and M. Hikosaka, Polymer 42, 2223 (2001), ISSN

0032-3861, URL https://www.sciencedirect.com/science/article/pii/

S0032386100004468.

[29] D. Patel and D. Bassett, Polymer 43, 3795 (2002), ISSN 0032-3861, URL https:

//www.sciencedirect.com/science/article/pii/S0032386102001787.

[30] J. M. Schultz, Polymer 44, 433 (2003), ISSN 0032-3861, URL https://www.

sciencedirect.com/science/article/pii/S0032386102007243.

[31] Y. Hatwalne and M. Muthukumar, Phys. Rev. Lett. 105, 107801 (2010), URL

https://link.aps.org/doi/10.1103/PhysRevLett.105.107801.

https://doi.org/10.1021/ja400833r
https://doi.org/10.1021/ja400833r
https://doi.org/10.1021/ja400833r
https://doi.org/10.1021/cg200640g
https://doi.org/10.1021/cg200640g
https://doi.org/10.1021/cg200640g
https://doi.org/10.1021/cm061666g
https://doi.org/10.1021/cm061666g
https://doi.org/10.1021/cm061666g
https://link.aps.org/doi/10.1103/PhysRevLett.79.4022
https://link.aps.org/doi/10.1103/PhysRevLett.79.4022
https://www.sciencedirect.com/science/article/pii/S0022024800004796
https://www.sciencedirect.com/science/article/pii/S0022024800004796
https://www.sciencedirect.com/science/article/pii/S0032386100004468
https://www.sciencedirect.com/science/article/pii/S0032386100004468
https://www.sciencedirect.com/science/article/pii/S0032386102001787
https://www.sciencedirect.com/science/article/pii/S0032386102001787
https://www.sciencedirect.com/science/article/pii/S0032386102007243
https://www.sciencedirect.com/science/article/pii/S0032386102007243
https://link.aps.org/doi/10.1103/PhysRevLett.105.107801


Chapter 5. Formation of banded spherulite by rhythmic growth 112

[32] S. Ghosh, D. Patra, and A. Roy, Phys. Rev. Mater. 6, 053401 (2022), URL

https://link.aps.org/doi/10.1103/PhysRevMaterials.6.053401.

[33] T. Kyu, H.-W. Chiu, A. J. Guenthner, Y. Okabe, H. Saito, and T. Inoue,

Phys. Rev. Lett. 83, 2749 (1999), URL https://link.aps.org/doi/10.1103/

PhysRevLett.83.2749.

[34] H. Xu, H.-W. Chiu, Y. Okabe, and T. Kyu, Phys. Rev. E 74, 011801 (2006),

URL https://link.aps.org/doi/10.1103/PhysRevE.74.011801.

https://link.aps.org/doi/10.1103/PhysRevMaterials.6.053401
https://link.aps.org/doi/10.1103/PhysRevLett.83.2749
https://link.aps.org/doi/10.1103/PhysRevLett.83.2749
https://link.aps.org/doi/10.1103/PhysRevE.74.011801


Chapter 6

Wrinkling of a thin sheet on a

nematic substrate

Wrinkling instability commonly occurs in a unidirectionally compressed thin sheet

floating on a fluid substrate. Here, we theoretically study the wrinkling instability

of a unidirectionally compressed thin sheet floating on a nematic medium. We have

minimized the total free energy of the system by assuming a sinusoidal undulation of

the compressed thin sheet. The variation of the wave vector of the wrinkling pattern

as a function of various model parameters has been explored. The model predicts

that the periodicity of the pattern is always larger in the case of nematic substrate

compared to its isotropic state. The wrinkling wavelength sensitively varies with the

curvature elastic constant and the surface anchoring condition of the nematic. In

contrast to the isotropic fluid substrate, it is found that the wrinkling periodicity

depends on the amount of compression for the hybrid anchoring condition of the

nematic director on the bounding surfaces.
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6.1 Introduction

Wrinkling instabilities can occur in various systems [1–4], such as our brains, dry fruit

skins, animal skins, flowers, on the crust of the earth, etc. These instabilities are of

great importance not only from a fundamental viewpoint but also their technological

applications [5–11]. Therefore, a lot of experiments have been carried out to gain

better insights into the underlying mechanisms [2, 12–17]. Besides these experiments,

a large number of theoretical studies have been performed to explain these instabilities

[2, 18–20]. Most of the studies deal with a unidirectionally compressed thin sheet atop

an isotropic fluid or elastic substrate [20–23].

An incompressible floating thin sheet atop an isotropic fluid develops wrinkles

under unidirectional compression. The wrinkling wavelength (λ) obeys a relation

λ ∼ (B/ρg)1/4 where B, ρ and g are bending modulus of the thin sheet, the density of

the isotropic liquid and the acceleration due to gravity, respectively. This wavelength

does not depend on external stimuli such as temperature and electric field. Hence,

the tunability of the wavelength is limited, and it is of great concern for technological

applications. In this context, an anisotropic substrate such as nematic liquid crystal

offers a way to couple the effect of these external drives.

In the uniaxial nematic phase, anisotropic rod-like molecules align their long axes

on average to a particular direction, but their center of masses remain randomly

distributed over space. Hence, the phase is intrinsically a fluid phase due to the

absence of positional order [24]. However, the long-range orientational order gives

rise to the anisotropic properties of the phase. The orientational order parameter is

primarily dictated by the temperature of a system. The average orientation direction

of the molecules is called director, which is apolar in nature. It is often denoted by

a unit vector n̂, and the apolar nature of the director implies n̂ ↔ −n̂ symmetry

of the nematic phase. The ground state of the nematic phase corresponds to the
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homogeneous alignment of the director n̂ over the space. The deviation from this

homogeneous orientation costs energy, but that can be easily induced by applying the

electric or magnetic field and anchoring conditions of the director on the bounding

surface.

Here, we consider the wrinkling instability of an incompressible thin sheet floating

on a nematic liquid crystal when the sheet is subjected to unidirectional compression.

The thickness of the sheet is assumed to be much less than its lateral dimensions.

We have considered three essential free energies associated with the system, namely

the bending energy of the thin sheet the gravitational and distortion energy of the

nematic fluid. In the distortion-free energy, strong anchoring conditions of the nematic

director field are assumed at the bounding surfaces. We minimize the total free

energy of the system by assuming a sinusoidal undulation of the compressed thin

sheet. A similar procedure has also been employed in earlier studies dealing with a

thin sheet floating on an isotropic fluid substrate [19, 23]. The mode corresponding

to the minimum free energy is considered to be the wave vector of the wrinkling

pattern. We have determined the variation of the wave vector as a function of model

parameters. The periodicity of the pattern in the case of the nematic substrate is

always found to be higher than that of the isotropic state of the substrate, and this

periodicity does not obey a simple relation in contrast to the system with an isotropic

substrate. The periodicity of the pattern sensitively depends on the curvature elastic

constants and the surface anchoring conditions of the nematic. It is also found that

the wrinkling periodicity depends on the displacement due to the compression for the

hybrid anchoring condition of the nematic substrate.
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6.2 Free energy of the system

We have analytically derived the expression of three essential free energies associated

with the system, namely the bending energy of the thin sheet and the gravitational

and distortion energies of the nematic fluid. We present the detailed formalism as

follows.

Figure 6.1: Schematic representation of an incompressible thin sheet floating on the
nematic substrate. The sheet is subject to a unidirectional compression ∆ along the
x-axis. The deformation of the thin sheet is confined in the xz plane.

6.2.1 Bending energy of the thin sheet

We consider a thin elastic sheet of length L, thickness d ( L >> d) and of infinite

width floating on a nematic liquid crystal medium as shown in figure 6.1. The elastic

constants of the sheet are given as stretching modulus Y ∼ Ed and bending mod-

ulus B ∼ Ed3, where E is Young’s modulus. Hence, for the thin sheet, the energy
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corresponding to the bending mode is much less compared to the energy associated

with the stretching mode, making it easier to be bent than to be stretched. Here, we

assume the thin sheet to be incompressible in nature and consider only the bending

energy associated with it when subjected to a unidirectional compression along the x

axis. Due to the compression, the sheet is assumed to deform in the xz plane while

remaining uniform along the y axis. The translational invariance along the y axis

gives rise to a system that can be treated effectively as two-dimensional. Therefore,

the cross-section of the deformed sheet can be expressed as a curve lying in the xz

plane, and the height profile h(s) can be parametrized by an arc length s varying from

−L/2 to L/2. Then we can write dx = ds
√

1− ḣ2 where ḣ represents the derivative

of h with respect to s. An arbitrary point (x(s), h(s)) on the curve also satisfies the

following equations

ẋ =
dx

ds
= cosϕ(s) =

√
1− ḣ2

ḣ =
dh

ds
= sinϕ(s)

ḧ = cosϕ
dϕ

ds
= cosϕϕ̇ = ϕ̇

√
1− ḣ2

where ϕ is the angle made by the local tangent vector t̂ with the x axis. The bending

energy of the sheet per unit width can be written as FB = B
2

∫
ds
R2 where R is the local

radius of curvature at the point (x, h). The radius of curvature at a point is given

by R = 1

| dt̂
ds

|
= ds

dϕ
=

√
1−ḣ2
ḧ

. Therefore, the bending energy of the thin sheet per unit

length (along the y-axis) can be expressed as

FB =
B

2

∫ L
2

−L
2

ds
ḧ2

1− ḣ2
(6.1)
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The total displacement ∆ due to the compression is given by

∆ = L−
∫
dx =

∫ L
2

−L
2

ds(1−
√

1− ḣ2), (6.2)

which expresses the incompressibility constraint of the thin sheet assumed in the

model.

6.2.2 Gravitational energy associated with the height mod-

ulation

The sheet is initially assumed to be flat at height H0 from the bottom surface of the

nematic medium as shown in figure 6.1. The unidirectional compression of the sheet

gives rise to a height modulation of the nematic medium. The height of the medium

at an arbitrary point is given by H + h where H is the average height of the nematic

medium after the compression and h denotes the modulation of height about H. The

conservation of total volume due to the incompressibility of the nematic medium leads

to the constraint H(L −∆) = H0L, which implies
∫
h(s)ds = 0. The change in the

average height of the liquid medium from the initial height is given by H −H0. The

rising of the liquid medium costs the gravitational potential energy. The gravitational

potential energy per unit area corresponding to the height increment H+h−H0 of the

liquid column can be written as
∫ H+h−H0

0
ρgzdz = ρg(H +h−H0)

2/2, where ρ and g

are the density of the liquid medium and the acceleration due to gravity, respectively

[25]. Therefore, the gravitational energy cost per unit length due to compression is

given by

Fg = (ρg/2)

∫ L−∆

0

(H + h−H0)
2dx

= ρg(L−∆)(H −H0)
2/2 + (ρg/2)

∫
h2dx.
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The first part of the above energy expression corresponds to the average height change

of the nematic medium due to the compression, and it does not depend on the height

profile h of the thin sheet. Hence, it does not contribute to the determination of the

height profile h by minimization of the total free energy. Therefore, the gravitational

potential energy of the system is considered as

Fg =

∫ L−∆

0

ρg

2
h2dx =

∫ L
2

−L
2

ds
ρg

2
h2
√
1− ḣ2. (6.3)

6.2.3 LC energy

The orientational order parameter of a uniaxial nematic phase can be defined by a

symmetric traceless second rank tensor Qαβ = S(nαnβ − δαβ/3) where α, β = x, y, z

are indices referring to the laboratory frame and δαβ is the Kronecker delta. The

scalar order parameter S represents the degree of orientation of the molecules and

generally varies with the temperature. Far from the isotropic to the nematic transition

temperature, the order parameter S tends to a saturated value. Hence, it can be

considered as constant at these lower temperatures. The uniform orientational order

corresponds to the ground state of the system. Therefore, the slow variation of the

director n̂(r⃗) in space costs energy. The energy cost associated with the director

modulation can be described by Oseen-Frank free energy

F [n̂] =

∫
1

2

[
K1(∇ · n̂)2 +K2(n̂.∇× n̂)2 +K3(n̂×∇× n̂)2

]
d3x. (6.4)

The constants K1, K2, and K3 are known as splay, twist, and bend elastic constants

of the nematic medium, respectively [24].

We now derive the expression for the nematic distortion-free energy during the

compression of the thin sheet floating on the nematic medium. We choose the bound-

ary conditions for the director n̂ underneath the elastic sheet to be either homeotropic
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Figure 6.2: Schematic representation of the nematic director field.

(i.e., perpendicular to the sheet) or parallel to the sheet in the xz plane. Similarly, we

also assume strong anchoring of the director n̂ at the bottom surface of the nematic

medium to be planar. In our model, we assume that the director field in the nematic

medium remains in the xz plane only. In this case, the director n̂ = (cosψ, 0, sinψ)

where ψ is the angle between the director n̂ and the x axis. Assuming one constant

approximation (K1 = K2 = K3 = K), the elastic deformation free energy per unit

length can be written as

FLC [ψ] =

∫ ∫
K

2

∣∣∣∣∇ψ∣∣∣∣2 dxdz. (6.5)

The minimization of the above free energy functional provides the Laplace equation

∇2ψ = ∂2xψ + ∂2zψ = 0. (6.6)

The solutions of this equation determine the minimum energy configuration of the

director field for given boundary conditions. The general solution of the equation 6.6

can be written as

ψ(x, z) = (A cosmx+B sinmx)(Cemz +De−mz) (6.7)

where A,B,C,D are dimensionless constants and the constant m has the dimension
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of length−1.

For homogeneous planar alignment of the director at the bottom surface of the

nematic medium, i.e., ψ = 0 at z = −H, the solution in equation 6.7 can be written

in the form

ψ(x, z) = (A cosmx+B sinmx)(emz − e−m(z+2H)), (6.8)

where A and B are arbitrary constants. Now consider planar or tangential anchoring

of the director on the surface of the thin sheet at the top of the nematic medium.

The height profile of this top surface is given by z = h(x), where we have assumed

translational invariance along the y axis. The unit normal and tangent vectors to

the curve z = h(x) at the point (x, h) are given by N̂ = 1√
1+h′2

(−h′, 0, 1) and t̂ =

1√
1+h′2

(1, 0, h′) respectively, where the prime denotes the derivative with respect to

x, i.e., h′ ≡ dh
dx
. Then, for the planar boundary condition of the director n̂ on the thin

sheet, we have ψ = tan−1h′ at z = h. Using this boundary condition in equation 6.8,

the final solution for the angle ψ can be written as

ψ(x, z) =
emz − e−m(z+2H)

emh − e−m(h+2H)
tan−1 h′ (6.9)

The solution in equation 6.9 corresponds to the planar anchoring condition at both the

boundary surfaces (i.e., planar anchoring condition). Similarly, for planar anchoring

at the bottom surface and homeotropic anchoring at the top surface (i.e., hybrid

anchoring condition), the solution becomes

ψ(x, z) =
emz − e−m(z+2H)

emh − e−m(h+2H)

(
π

2
+ tan−1 h′

)
(6.10)

Therefore, the solution of ψ varies with the anchoring conditions at the upper and

bottom surfaces. For both these boundary conditions, the solution of ψ can also be
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written in a single expression as

ψ(x, z) =
emz − e−m(z+2H)

emh − e−m(h+2H)

(
ψ1 + tan−1 h′

)
(6.11)

where the ψ1 takes values 0 and π/2 for the planar and hybrid boundary conditions,

respectively. To get an effective free energy that depends only on the height profile h,

we integrate the nematic elastic distortion free energy from the bottom surface to the

top of the nematic medium using the solution of ψ satisfying appropriate boundary

conditions. Integrating the equation 6.5 over z, the nematic elastic distortion free

energy per unit length is

FLC [ψ] =
K

2

∫
dx

∫ h

−H

[
(∂xψ)

2 + (∂zψ)
2
]
dz (6.12)

Using the solution of ψ in equation 6.11, one can find

∂xψ =
emz − e−m(z+2H)

emh − e−m(h+2H)

[ h′′

1 + h′2
−mh′ exp

mh+exp−m(h+2H)

emh − e−m(h+2H)
(ψ1 + tan−1 h′)

]
∂zψ = m

emz + e−m(z+2H)

emh − e−m(h+2H)
(ψ1 + tan−1 h′).

By plugging the expressions for ∂xψ and ∂zψ in equation 6.12 and integrating over z,

the final free energy functional in terms of height profile h can be written as

FLC [h] =

∫
dxfLC(h, h

′, h′′) (6.13)
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where

fLC(h, h
′, h′′) =

K

2
(
emh − e−m(h+2H)

)2 ×
[(e2mh − e−2m(h+2H)

2m
− 2(h+H)e−2mH

){
h′′

1 + h′2
−mh′ e

mh + e−m(h+2H)

emh − e−m(h+2H)
(ψ1 + tan−1 h′)

}2

+m2(ψ1 + tan−1 h′)2
(

e2mh − e−2m(h+2H)

2m
+ 2(h+H)e−2mH

)]
(6.14)

For large depth H → ∞, the free energy density fLC(h, h
′, h′′) in equation 6.14

becomes

fLC =
K

4m

[(
h′′

1 + h′2

)2

− 2m
h′h′′

1 + h′2
(ψ1 + tan−1 h′) +m2(1 + h′

2
)(ψ1 + tan−1 h′)2

]
.

(6.15)

Expressing the derivatives h′ and h′′ in terms of the derivatives with respect to the

arc length s, one can write

h′ =
dh

dx
=
ds

dx

dh

ds
=

1√
1− ḣ2

dh

ds
=

ḣ√
1− ḣ2

h′′ =
ḧ

(1− ḣ2)2

where ḣ denotes the derivative with respect to s i.e. ḣ ≡ dh
ds
. Substituting h′ and h′′

in equation 6.13, the free energy functional per unit length can be written as

FLC =
K

4m

∫ L
2

−L
2

ds

[
ḧ2

(1− ḣ2) 3
2

− 2m
ḧḣ

1− ḣ2
(ψ1 + tan−1 ḣ√

1− ḣ2
)

+
m2√
1− ḣ2

(
ψ1 + tan−1 ḣ√

1− ḣ2

)2
]
. (6.16)
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6.2.4 Total Energy

The total free energy of the system per unit length is the sum of all three energies

F = FB + Fg + FLC . The model can give rise to multiple length scales of the system

depending on the competition between any two energies. The elastic free energy

FLC is found to be low in our system compared to FB and Fg. Therefore, we chose

the length λ0 = ( B
ρg
)
1
4 as the length scale in our model, which can be obtained by

comparing FB and Fg. Rescaling the free energy in terms of the bending modulus B

and measuring all the lengths in the unit of λ0, the dimensionless form of the total

free energy functional can be written as

F̃ =

∫ L
2

−L
2

ds

[
1

2

ḧ2

1− ḣ2
+

1

2
h2
√

1− ḣ2 + K̃

4m̃

{
ḧ2

(1− ḣ2) 3
2

− 2m̃
ḧḣ

1− ḣ2
(ψ1 + tan−1 ḣ√

1− ḣ2
) +

m̃2√
1− ḣ2

(
ψ1 + tan−1 ḣ√

1− ḣ2

)2}]
,

(6.17)

and the dimensionless form of the incompressibility constraint of the thin sheet be-

comes

∆ =

∫ L
2

−L
2

ds(1−
√

1− ḣ2) , (6.18)

where K̃ = Kλ0
B

and m̃ = mλ0.

6.3 Energy minimization

The optimal shape h(s) of the thin sheet can be determined by minimizing the di-

mensionless energy with the incompressibility constraint of the thin sheet given by

the equations 6.17 and 6.18, respectively. The energy expression contains highly non-

linear terms, and finding the analytical solution of optimal h(s) is a formidable task.

Hence, we minimize this energy by assuming the ansatz h(s) = A cos qs. A similar
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procedure has also been employed in earlier studies dealing with a thin sheet float-

ing on an isotropic fluid substrate [19, 23]. In our model, the bending energy of the

thin sheet is the most dominant term. Hence, the modulation wavelength of the thin

sheet determines the periodicity in the director distortion in the underlying nematic

medium. Therefore, we assume m̃ = q in our model. Such an assumption has also

been used in earlier studies investigating grooved surface-induced alignment of the

nematic liquid crystals [24, 26–29]. The total energy being an extensive quantity, we

define F̃ = Lε(δ) following the earlier study [23] where ε(δ) is the intensive quantity

and δ = ∆/L. Retaining the terms up to the fourth order in the amplitude A, the

constraint equation 6.18 can be written as

δ =
A2q2

4
+

3A4q4

64
. (6.19)

The energy expression for the planar anchoring condition can be written as

ε =
A2

4
(q4 + K̃q3 + 1) +

A4q2

32
(2q4 + 4K̃q3 − 1), (6.20)

whereas for the hybrid anchoring condition, it can be expressed as

ε =
π2qK̃

16
+
A2

4

[
q4 + K̃q3(1 +

π2

16
) + 1

]
+
A4q2

32

[
2q4 + 4K̃q3(4 +

9π2

32
)− 1

]
. (6.21)

Solving the quadratic equation 6.19 for A2, one can write

A2 =
8
√
1 + 3δ − 8

3q2
∼=

8(1 + 3δ
2
− 9δ2

8
)− 8

3q2
=

4δ − 3δ2

q2
. (6.22)

Substituting the expression for A2 from the equation 6.22 in the free energy expres-

sions 6.20 and 6.21, and retaining the terms up to the second order in δ, we obtain

the final energy expressions. The free energy expression for the planar anchoring
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condition can be written as

ε = (q2 + K̃q +
1

q2
)δ + (q2 + 5K̃q − 5

q2
)
δ2

4
. (6.23)

The free energy expression for the hybrid anchoring condition is

ε =
π2qK̃

16
+
[
q2 + K̃(1 +

π2

16
)q +

1

q2
]
δ +

[
q2 + K̃q(5 +

3π2

8
)− 5

q2
]δ2
4
. (6.24)

For the isotropic fluid medium, K̃ is zero, and the anchoring conditions lose physical

meaning. Hence, the energy density ε for the isotropic liquid medium can obtained

by putting K̃ = 0 in both the expressions 6.23 and 6.24, which agrees with the earlier

theoretical study [23]. We numerically minimize these energy expressions with respect

to q to obtain the optimal wavelength of the wrinkling patterns.

6.4 Results and Discussions

The variation of the energy density ε as a function of the wave vector q is shown

in figure 6.3 for both planar and hybrid anchoring conditions. The energy decreases

sharply for low values of q, showing an asymmetric minimum at q = qc and again

increases for higher values of q. The qc determines the wavelength of the wrinkling

instability. It is found that the energy densities given by these equations 6.23 and 6.24

do not vary significantly on neglecting the quadratic term in δ in our model. It can be

seen from figure 6.3 that the two curves of the energy, including linear and quadratic

terms in δ, only differ slightly for higher values of q. Henceforth, for simplicity, we

neglect the quadratic term in δ in the energy expressions.

For the isotropic medium, one can easily find that the wrinkling pattern has min-

imum energy for qc = 1, which is independent of compression δ. But, the amplitude

depends on δ as A ∼ 2
√
δ/qc. The wavelength of the wrinkling pattern can be ob-
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Figure 6.3: The variation of the energy density ε as a function of the wave vector
q for (a) the planar anchoring condition and (b) hybrid anchoring condition where
K̃ = 0.25 and δ = 0.1.

tained from qc as λ = 2π
(
B
ρg

) 1
4
which has been experimentally validated in earlier

study [12].

For the planar anchoring condition of the nematic medium, the variation of qc

with K̃ is shown in figure 6.4. The qc decreases non-linearly with the increasing values

of K̃. This can be understood from the fact that the large wavelength undulation

of the thin sheet reduces the elastic distortion energy of the nematic medium. It

is interesting to note that qc in the nematic medium is always less than one which

corresponds to the isotropic medium. In other words, the wavelength of the wrinkling

pattern corresponding to the planar anchoring condition of the nematic medium is

higher compared to that of the isotropic liquid medium. It should be noted that qc

for the planar anchoring condition does not depend on δ up to linear order in δ in

equation 6.23. This is similar to that of the isotropic medium.

For the hybrid anchoring condition of the nematic director at the bounding sur-

faces, the model predicts different properties compared to the planar anchoring con-

dition. In this hybrid anchoring condition, qc depends on both K̃ and δ, unlike both

the cases of isotropic medium and nematic medium with the planar alignment. This

difference can be understood from the minimization of the energy density in equa-
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Figure 6.4: The variation of the optimal wave vector qc as a function of the effective
elastic constant K̃ for the planar anchoring conditions of the nematic director field.

tion 6.24 with respect to the wave vector q. Figure 6.5(a) represents the variation

of qc with K̃ for different fixed values of δ. The qc decreases non-linearly with the

increasing values of K̃, which can be explained by the lower energy cost associated

with the distortion of the nematic director over the large wavelength modulation.

Figure 6.5(b) represents the variation of qc as a function of δ for different fixed values

of K̃. For a fixed value of K̃, qc increases with the increasing values of δ. Large

compression can give rise to the high amplitude undulation of the thin shit, which is

favored by both the nematic elastic energy and bending energy, but not favored by the

gravitational energy contribution. The competing effect of these energies determines

qc as a function of δ. Similar to the planar anchoring condition, qc is always less than

one for the hybrid anchoring condition of the nematic director. Thus, the wavelength



129 6.4. Results and Discussions

Figure 6.5: Representing the results for the hybrid anchoring condition of the nematic
director field. (a) The variation of the optimal wave vector qc as a function of the
effective elastic constant K̃ for different values of δ. (b) The variation of qc as a
function of δ for different values of K̃.

of the undulation in the case of a nematic medium is always higher than that of the

isotropic medium.

Therefore, the wavelength of the wrinkling patterns strongly depends on the elastic

distortion energy of the nematic director. It is well known that the electric field

couples with the nematic director and tends to align the director field. Hence, the

application of the electric field can tune the wavelength of the wrinkling patterns.

Moreover, the nematic elastic constant (K̃) depends on the scalar orientational order

parameter S, which varies with the temperature. Therefore, the temperature can also

tune the wavelength of the wrinkling patterns.

The above theoretical findings suggest that nematic elastic deformations can have

important effects on wrinkling instability. Experimental studies of wrinkling insta-

bility using polystyrene thin sheets have been reported earlier for the isotropic fluid

substrate. The thickness of the polystyrene sheet used in such experiments was about

50− 100 nm. We now explore the conditions under which the nematic distortion can

have significant effects on wrinkling instability in these types of experimental sys-

tems. It can be seen from figure 6.5 that the nematic effect can be easily observed for

values of K̃ greater than about 0.2 where the effective elastic constant K̃ = Kλ0
B

. The
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density and curvature elastic constant of a nematic medium are ρ ∼ 1000 Kg/m3

and K ∼ 10−11 N , respectively. The Young modulus of polystyrene material lies in

the range E ∼ 1.9− 2.9 GPa, and the bending modulus of a thin sheet of thickness

t is given by B ∼ Et3. The length scale λ0 = ( B
ρg
)
1
4 where g ∼ 10 m/s−2 is the

acceleration due to gravity. Using these values of parameters, we find that the thick-

ness of the polystyrene sheet should be lower than 20 nm to observe the significant

effects of the nematic medium on the wrinkling pattern. It should be noted that

the thickness of the polystyrene sheet should be much lower than that used in pre-

vious experiments for isotropic substrates. However, a system with the lower Young

modulus of the thin sheet or a nematic substrate with a higher curvature elastic con-

stant can also be a good model system to validate our theoretical predictions. It is

known that the nematic elastic constant K shows diverging behavior on approaching

the nematic-smectic A transition temperature. Therefore, the experimental studies

near the nematic-smectic A transition temperature can be performed to validate our

theoretical findings.

6.5 Summary

We have theoretically studied the wrinkling instability in a unidirectionally com-

pressed thin sheet floating on a nematic liquid crystal medium. The variation of the

wave vector of the wrinkling pattern as a function of various model parameters has

been studied. The periodicity of the pattern is always found to be larger in the case

of nematic substrate compared to its isotropic state. This arises due to the excess

energy cost associated with the distortion of the nematic director during wrinkling.

It is found that the periodicity of the pattern sensitively depends on the curvature

elastic constant and the surface anchoring conditions of the nematic. Interestingly,

the model also predicts that the wrinkling periodicity depends on the amount of com-
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pression for the hybrid anchoring condition of the nematic director on the bounding

surfaces.
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Chapter 7

Conclusions and future research

directions

This thesis includes theoretical and computational studies toward the understanding

of self-assembled structures and their properties exhibited by liquid crystalline sys-

tems. In this chapter, we summarize the main findings of this thesis and discuss the

directions for future investigations.

In Chapter two, we have studied the effects of excluded volume interaction on

the spontaneous chiral symmetry breaking observed in the tilted smectic phases of the

achiral bent-core molecules. We have numerically computed excluded volume between

two rigid bent-core molecules in a layer using two types of model structures of the

molecules, namely the hard-spherocylinder model and the bead model. The excluded

volume interactions for both models of the bent-core molecules account for the chiral

symmetry breaking in their tilted smectic phase. It is found that the excluded volume

interaction can give rise to C1, C2, and CS point symmetries of a tilted polar smectic

layer depending on the molecular model. Based on the excluded volume results, we

have also constructed a coupled XY-Ising model to describe the phase behavior of

a layer consisting of bent-core molecules. The Monte Carlo simulations performed

135



Chapter 7. Conclusions and future research directions 136

on this system account for the experimentally observed chiral symmetry breaking

induced by both the temperature as well as the electric field.

At present, the simulations for our coupled XY-Ising model were performed on a single

layer of the smectic phase and hence, deals only with intralayer interactions among the

particles. In the actual three-dimensional smectic phase, the interlayer interactions

also play significant roles in the phase behavior and can lead to rich varieties of self-

assembled structures. As future research, it is worthwhile to perform the Monte-Carlo

simulations using our coupled XY-Ising model for a three-dimensional smectic phase.

InChapter three, we have developed a Landau theory accounting for the SmA→

de Vries SmA → SmC phase sequence observed in our sample consisting of bent-core

hockey stick-shaped molecules. The theoretical model describes a weakly first-order

phase transition from the SmA phase to the de Vries SmA phase and a second-

order phase transition from the de Vries SmA phase to the SmC phase, as observed

in our experimental studies. The temperature variation of the layer compression

obtained from the theoretical model is compared with the experimental data and

agrees reasonably well with the experimental observations. We have also constructed

a phase diagram showing the stability regions of these phases on a parameter plane

of the model.

The theory presented in this thesis does not deal with any terms involving the polar

or chiral order of the system. However, the bent-core molecules are known to exhibit

polar as well as chiral order in some of their tilted smectic phases. Therefore, the

extension of the theory to include the polar and chiral order parameters can be a

future research project.

In Chapter four, we have described a coupled phase-field model comprised of

a conserved and a nonconserved order parameter. The dynamics of the order pa-

rameters are governed by the time-dependent Ginzburg-Landau model C equations.

We have performed the linear stability analysis of the equations to find the fastest-
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growing instability mode for various values of the model parameters. By employing

the finite difference method, we have also computed the numerical solutions of the

nonlinear differential equations of the model. The numerical solutions exhibit various

patterns, such as continuous, ring-banded, and broken ring patterns, depending on

the model parameters. In Chapter five, we have employed this model to account for

the banded spherulitic growth observed in our experimental studies on a pure liquid

crystalline compound. The variation of the experimentally observed band spacing as

a function of supercooling agrees well with the theoretical predictions. It is found

that the radius of the simulated banded spherulitic domain increases in a step-like

fashion with time, giving rise to the rhythmic growth dynamics.

Our current model describes the rhythmic growth-assisted formation of banded spherulites.

However, some other systems, especially polymers, are known to form banded spherulites

without showing the rhythmic growth of the radius with time. The experimental ev-

idence suggests that the banded spherulites for these systems are formed due to the

coherent twisting of radially aligned fibrils. It would be interesting to incorporate the

twisting of the fibrils in our model.

In Chapter six, we have constructed a theory describing the wrinkling instability

of a thin elastic sheet floating atop a nematic medium and compressed unidirection-

ally. The minimization of the effective one-dimensional free energy of the system

gives rise to the favored wrinkling wavelength of the sheet. The wrinkling wavelength

strongly depends on the surface anchoring conditions of the nematic director and the

elastic constant of the medium. It is also found that the wavelength is always found

to be larger in the nematic phase of the substrate than that of its isotropic phase.

The experimental verification of the theoretical predictions would be an interesting

project for future research. It is well known that the applied electric field easily tunes

the orientation of the nematic director. Therefore, the effect of the applied field

on wrinkling can also be worthwhile theoretical as well as experimental projects for
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future research.
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