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Abstract
We investigate heat transport through a one-dimensional open coupled scalar field theory,
depicted as a network of harmonic oscillators connected to thermal baths at the boundaries.
The non-Hermitian dynamical matrix of the network undergoes a stability-to-instability tran-
sition at the exceptional points as the coupling strength between the scalar fields increases.
The open network in the unstable regime, marked by the emergence of inverted oscillator
modes, does not acquire a steady state, and the heat conduction is then unbounded for gen-
eral bath couplings. In this work, we engineer a unique bath coupling where a single bath
is connected to two fields at each edge with the same strength. This configuration leads to a
finite steady-state heat conduction in the network, even in the unstable regime. We also study
general bath couplings, e.g., connecting two fields to two separate baths at each boundary,
which shows an exciting signature of approaching the unstable regime for massive fields. We
derive analytical expressions for high-temperature classical heat current through the network
for different bath couplings at the edges and compare them. Furthermore, we determine the
temperature dependence of low-temperature quantum heat current in different cases.

Keywords Heat transport · Coupled scalar field theory · Stability-to-instability transition ·
Quantum Langevin equations

1 Introduction

The physics of non-Hermitian quantum systems [1] has received extensive research inter-
est in the last three decades. The first wave of research came through the parity-time (PT )

symmetric non-Hermitian Hamiltonians, which display real eigenenergies and exhibit excit-
ing comparisons to the dynamics of Hermitian Hamiltonians [2–9]. The topological features
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of non-Hermitian Hamiltonians with different discrete symmetries [10–18] have generated
a second wave of research interest. While the Hermitian Hamiltonian description is valid
for an isolated physical system, the non-Hermitian modeling is natural for most systems
when they are in contact with one or multiple environments, as in the canonical and grand-
canonical descriptions of equilibrium statistical mechanics. There is another interesting class
of Hermitian quadratic bosonic Hamiltonians [19, 20] for closed systems, whose dynam-
ics are governed by non-Hermitian Bogoliubov-de Gennes effective Hamiltonians [21–25].
The emergent non-Hermitian effective Hamiltonians can have a generalized PT symmetry,
which is broken when diagonalisability is lost at exceptional points (EPs) in the parame-
ter space. These EPs mark stability-to-instability transitions between a dynamically stable
regime with the unbroken PT symmetry and a dynamically unstable regime with the broken
PT symmetry.

We consider a coupled quantum scalar field theory in one space dimension that exemplifies
such a Hermitian quadratic bosonic Hamiltonian. Such field theories have been explored for
decades in understanding basic physical phenomena, such as the Higgs field, and introducing
novel concepts and techniques of quantum field theories [26, 27]. It is possible to engineer
prototypes of such field theories using mechanical, optical, and opto-mechanical networks
[28]. In the unstable regime of the coupled scalar field theory or network, it hosts inverted har-
monic oscillator [29]modes that have been examined for a diverse set of physical phenomena,
including the Hawking–Unruh effect and scattering in the lowest Landau level in quantum
Hall systems [30]. Here, we connect the two boundaries of the coupled scalar field theory
discretized on a lattice as an oscillator network to heat baths kept at different temperatures.
We investigate heat transport [31, 32] in this open network. Our motivation is to understand
how heat transport behaves around the EPs marking stability-to-instability transitions [33].
To study heat transport, we write quantum Langevin equations for the degrees of freedom
of the scalar field theory after integrating out the baths, and solve these equations using the
non-equilibrium Green’s functions [32, 34]. The steady-state heat transport emerges only in
the dynamically stable regime of the field theory for general system-bath coupling due to
the appearance of unbounded inverted oscillator modes in the unstable regime. Nevertheless,
as explained in our study, heat transport is insensitive to stability-to-instability transition
for some particular types of bath couplings, which is one of our main findings. We derive
analytical expressions for the heat current in the high-temperature linear response regime
and evaluate the temperature dependence of quantum heat current. The temperature depen-
dence is different for the massive and massless scalar fields and it also depends on the bath
coupling and the coupling between the scalar fields. We further compare steady-state heat
transport between different types of bath couplings at two boundaries and between separate
heat bath spectral properties. Heat current for general bath couplings, e.g., connecting two
fields to two separate baths at each boundary, shows an exciting signature of approaching the
unstable regime for massive scalar fields.

The rest of the paper is divided into six sections and four appendices. We introduce the
non-Hermitian description for the dynamical matrix of the coupled scalar field theory and
the stability-to-instability transition in Sect. 2. In Sect. 3, we introduce a lattice version of the
field theory and its spectral properties. The heat conduction through the lattice of oscillators,
connected differently to heat baths at the boundaries is discussed in Sect. 4. We include our
results for single and two baths at each edge in Sects. 5 and 6, respectively. We conclude with
a summary and outlook in Sect. 7. Details of our derivation of heat current for two different
bath couplings and different bath spectral properties are included in the four appendices at
the end.

123



Heat Transport Through an Open Coupled… Page 3 of 33   123 

2 Dynamical Matrix and Stability-to-Instability Transition

We consider a coupled quantum scalar field theory of two real scalar fields φ1(x) and φ2(x)
with a minimal coupling represented by the Hamiltonian:

H = 1

2

∫
dx
[
�2

1 + c2(∂xφ1)
2 + �2

2 + c2(∂xφ2)
2

+m2c4

�2
(φ2

1 + φ2
2)
]

+ λc2
∫

dx (∂xφ1)(∂xφ2), (1)

where thefieldvariables satisfy theusual canonical commutation relations, [φα(x),�β(x ′)] =
i�δαβδ(x − x ′) for α, β = 1, 2. Here, λ > 0 is a dimensionless coupling constant and m is
the mass of the fields. We write down the Heisenberg equations for φα,�α , and then take
Fourier transformation to momentum space as φ̃α(q, t) = (1/

√
2π)

∫
dx e−iqx/�φα(x, t)

and �̃α(q, t) = (1/
√
2π)

∫
dx e−iqx/��α(x, t) for α = 1, 2 to find

i
∂φ̂

∂t
= i

⎡
⎢⎢⎢⎣

0 1 0 0
−m2c4−q2c2

�2 0 −λq2c2

�2 0
0 0 0 1

−λq2c2

�2 0 −m2c4−q2c2

�2 0

⎤
⎥⎥⎥⎦ φ̂ ≡ Gφ̂, (2)

where φ̂ = (φ̃1, �̃1, φ̃2, �̃2)
T. ThematrixG governs the dynamics of these field variables. In

general, the dynamicalmatrixG is non-Hermitian, i.e.G �= G†. In fact,wefind,G† = τ2Gτ2,
where τ2 = 12⊗σ2; thus, G is a pseudo-Hermitian matrix. Here, 12 is a 2×2 identity matrix
and σi ’s (for i = 1, 2, 3) are Pauli matrices.

The eigenvalues of G are ±(c/�)
√
c2m2 + q2(1 ± λ). For fixed values of q and m, the

eigenvalues of G switch from real to complex conjugate pairs as we change λ beyond 1 +
(cm/q)2 ≡ 1 + (kC/k)2, where the Compton wave number kC = mc/� and momentum
q = �k. Then, the transition from real to complex eigenvalues of G results for wave number
k2 > k2C/(λ−1). Thus, for sufficiently high frequencies, the condition λ > 1 leads to an ultra-
violet instability. When the eigenvalues become zero for some parameters, the eigenvectors
also coincide. These values of parameters correspond to EPs in the parameter-space. The
generalized PT symmetry of G explains these features of the eigenvalues. In fact, we find,
G∗ = τ3Gτ3 for τ3 = 12 ⊗ σ3, which is in general, true for any PT symmetric matrix. Let
us consider,

[PT ,G] = 0 �⇒ PG∗ = GP. (3)

Thus,G isPT symmetricmatrixwhenwe identify the parity operator asP = τ3. In general, a
non-Hermitian (Hamiltonian) matrix admits a real spectrum for some values of the parameter
even if the symmetry operator is not PT , but instead is an anti-unitary operator A satisfying
the condition A2r = 1 with r odd [6]. In fact, this is known as the generalizedPT -symmetry.
The unbroken regime of symmetry admits real spectrum while the spontaneous breaking of
the symmetry leads to complex eigenvalues. To understand the symmetry of G better, we
notice that a combination of τ3 and complex conjugation operator κ acts as the anti-unitary
operator A = τ3κ . Here, κ acts as a time-reversal operator (T ) for spin-less systems. The
spectrum of the Hermitian Hamiltonian in Eq. 1 also drastically changes its features across
the EPs.
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3 Coupled Scalar Field Theory on Lattice: Two-Component Harmonic
Chain

We discretize this field theory by placing it on a lattice enabling the calculation of non-
equilibrium heat transport using the lattice Green’s functions. We use the redefinition, yα,n =
(cd2/�)1/2φα(x = nd), pα,n = (�/c)1/2�α(x = nd) for α = 1, 2 and n = 1, 2, . . . N .
Here, d is the lattice spacing. Thus, the effective low-energy (since d introduces a UV cutoff)
description of this field theory in Eq. 1 is given by the Hamiltonian:

H =
2∑

α=1

[
N∑

n=1

( p2α,n

2m0
+ kp

2
y2α,n

)
+

N∑
n=0

k

2
(yα,n+1 − yα,n)

2

]

+λk
N∑

n=0

(y1,n+1 − y1,n)(y2,n+1 − y2,n). (4)

Here, m0 = �/dc, kp = (�/dc)(m2c4/�
2) and k = (�/dc)(c/d)2. Physically, this

Hamiltonian represents a network made by a pair of interconnected chains of harmonic
oscillators (springs) representing two types of scalar fields. We have [yα,n, pβ,n′ ] =
i�δnn′δαβ . We may view this network as a two-component harmonic oscillator chain. In
other words, the same kind of oscillators are connected to their nearest neighbors by
spring constant k. The chains are coupled between each other through a coupling λk.
Moreover, each oscillator is locally pinned by a harmonic potential of strength kp . We
impose fixed boundary conditions, yα,0 = yα,N+1 = 0 for the network. The Hamil-
tonian in Eq. 4 can be diagonalized by a series of transformations to normal modes:
yα,n = √

2/(N + 1)
∑N

q ′=1 ỹα,q ′ sin
[
πnq ′/(N + 1)

]
, ỹs/a,q ′ = (ỹ1,q ′ ± ỹ2,q ′)/

√
2, and

similar relations for pα,n . Thus, we get

H =
N∑

q ′=1

[
p̃2s,q ′

2m0
+ m0

2
s,q ′

2
ỹ2s,q ′ + p̃2a,q ′

2m0
+ m0

2
a,q ′

2
ỹ2a,q ′

]
, (5)

where the frequencies s,q ′ ,a,q ′ of symmetric and anti-symmetric normal modes are,
2

s/a,q ′ = (kp/m0) + (4k(1 ± λ)/m0) sin2
[
πq ′/(2(N + 1))

]
. For λ > λc ≡ 1 +

(kp/4k) csc2 [πN/(2(N + 1))], a,q ′ can become imaginary implying the presence of
inverted oscillator modes along with regular oscillators. Thus, the network can admit imag-
inary frequencies beyond a critical λ, which leads to an instability in the field theory. The
evolution of some observables, e.g., the out-of-time order correlators (OTOC), is unbounded
in time in the dynamically unstable regime for parameters with at least one inverted normal
mode [35–37]. In the absence of inverted normal modes, the time evolution of all observables
including the OTOC is bounded in the dynamically stable regime.

4 Heat Conduction

We connect two ends of the oscillator network to heat baths kept at different temperatures
TL , TR . We consider two different types of coupling between the network and the baths at
the boundaries. We first take both the oscillators (fields) at any boundary being connected
to a single bath with the same coupling strength (see Fig. 1). This leads to the equations of
motion (EOM) for the oscillators at the boundaries in the following form for any general
model of baths:
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Fig. 1 A cartoon of the oscillator network connected to a single bath at each boundary. Here, TL and TR
denote the left and right bath temperatures, respectively. The parameters k, kp and λk, respectively, represent
the spring constant, local pinning strength, and coupling strength between the two types of oscillator chains.
The bath coupling with the network at the left and right boundary are γL and γR , respectively

m0 ÿα,1 = −kp yα,1 − k
[
(2yα,1 − yα,2) + λ(2yβ,1 − yβ,2)

]

+
∫ t

−∞
dt ′�+

L (t − t ′)
√
2ys,1(t

′) + ηL , (6)

m0 ÿα,N = −kp yα,N − k
[
(2yα,N − yα,N−1) + λ(2yβ,N − yβ,N−1)

]

+
∫ t

−∞
dt ′�+

R (t − t ′)
√
2ys,N (t ′) + ηR, (7)

where α �= β, α, β = 1, 2, and the symmetric modes ys,n(t) = (y1,n(t) + y2,n(t))/
√
2 for

n = 1, 2, . . . N . Here, we assume the heat baths are connected to the network at infinite past.
The noise terms ηL(t), ηR(t) from the left and right heat baths are related to the self energies
�+

L , �+
R of the corresponding baths through the fluctuation-dissipation relations as given in

Eq. 20.
The heat current in the network can be evaluated by calculating the rate at which the heat

bath at any boundary does work on the network [34, 38]. Employing the continuity equation,
we find the heat current JI(t) at the left boundary as

JI(t) = −ẏs,1(t)
(√

2ηL(t) +
∫ t

−∞
dt ′2�+

L (t − t ′)ys,1(t ′)
)
, (8)

which solely depends on the symmetric modes of the network. Such form of heat current
appears due to the symmetric coupling of the heat bathswith the network,which is also evident
from the EOM for the oscillators at the boundaries in Eqs. 6 and 7. Since the frequency
of the symmetric modes remains real-valued for all λ, these modes are bounded for all
time. Therefore, JI(t) is insensitive to the stability-to-instability transition in the network for
symmetric connections to one heat bath at each boundary. We can find a steady state of JI(t)
both in the stable and unstable regime of the network.

Next, we consider that each oscillator (field) at any boundary is connected to an individual
heat bath with the same coupling strength (see Fig. 2). Both baths at any boundary are kept at
the same temperature. Such coupling leads to the EOM for the oscillators at the boundaries
in the following form for a general model of heat baths:

m0 ÿα,1 = −kp yα,1 − k
[
(2yα,1 − yα,2) + λ(2yβ,1 − yβ,2)

]
+
∫ t

−∞
dt ′�+

α,L(t − t ′)yα,1(t
′) + ηα,L , (9)
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Fig. 2 A cartoon of the oscillator network connected to two baths at each boundary. Both baths on the left are
kept at temperature TL , and those at the right are at TR , respectively. As explained in Fig. 1, the parameters k,
kp , and λk represent spring constant, pinning strength, and coupling between the harmonic oscillator chains.
The bath coupling with the network at the left and right boundary are γL and γR , respectively

m0 ÿα,N = −kp yα,N − k
[
(2yα,N − yα,N−1) + λ(2yβ,N − yβ,N−1)

]
+
∫ t

−∞
dt ′�+

α,R(t − t ′)yα,N (t ′) + ηα,R, (10)

where again α �= β, α, β = 1, 2, and ηα,L (ηα,R) and �+
α,L (�+

α,R) are noise and self-energy
of the two heat baths at the left (right) boundary. The heat current JII(t) for this case from
the continuity equation takes the following form at the left boundary:

JII(t) = −
∑

α=1,2

ẏα,1(t)

(
ηα,L(t) +

∫ t

−∞
dt ′�+

α,L(t − t ′)yα,1(t
′)
)

, (11)

which shows that both boundary oscillators appear explicitly in the heat current. Thus, JII(t)
depends on both the symmetric and anti-symmetric modes. Consequently, JII(t) would not
reach a steady state for the network in the unstable regime, as the anti-symmetric modes
become unbounded over time. Nevertheless, JII(t) acquires a steady-state value when the
network is in the stable regime, since both the symmetric and anti-symmetric modes are
bounded over time.

The qualitative difference in achieving steady-state heat conduction due to different ways
of coupling to varying numbers of thermal baths at the boundaries is one highlight of our
present study. The differences in the system-size scaling of heat conduction for different
types of boundary coupling with a fixed number of baths have been shown earlier in heat
transport through disordered harmonic lattices, which attracted much attention [39–41]. We
consider two different types of heat baths, namely, (a) baths modeled by semi-infinite ordered
harmonic chains (Rubin model of baths) [42], and (b) white noise baths [43]. The white noise
in a bath is uncorrelated at any two different times signaling Markovian dynamics. The color
noise in the Rubin model of bath are correlated for different times indicating non-Markovian
feature.

The EOM for the oscillators’ displacements in the bulk for α �= β, α, β = 1, 2 and
n = 2, 3, . . . N − 1 are:

m0 ÿα,n = −kp yα,n − k
[
(2yα,n − yα,n−1 − yα,n+1) + λ(2yβ,n − yβ,n+1 − yβ,n−1)

]
. (12)

We solve these EOM in Eqs. 6, 7, 9, 10, and 12 using Fourier transforms of yα,n(t), ηb(t),
ηα,b(t),�

+
b (t),�+

α,b(t) to frequency domain with b = L, R, e.g.,
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ỹα,n(ω) = 1

2π

∫ ∞

−∞
dt yα,n(t)e

iωt . (13)

The self-energy �̃+
b (ω) = iγ o

b ω for the white noise baths, and

�̃+
b (ω) = γ 2

b

k0

⎡
⎣
(
1 − m0ω

2

2k0

)
+ i

⎛
⎝ω

√
m0√
k0

√
1 − m0ω2

4k0

⎞
⎠
⎤
⎦ , (14)

for the Rubin baths, where γ o
L , γ o

R, γL , and γR control the coupling of the respective bound-
ary oscillators with the left and right Ohmic and Rubin baths, respectively. This leads to
�̃+

α,b(ω) = �̃+
b (ω) for α = 1, 2. Here, 2

√
k0 is the finite band-width of the Rubin baths

in comparison to infinite band width for the white noise baths. We further introduce the
symmetric and anti-symmetric modes as ỹs/a,n(ω) = (ỹ1,n(ω) ± ỹ2,n(ω))/

√
2.

5 Single Bath at Each Boundary

For a single bath at each boundary of the network, the EOM in Eqs. 6 and 7 get decoupled
in terms of these symmetric and anti-symmetric modes as,

zL+ ỹs,1(ω) − k(1 + λ)ỹs,2(ω) = √
2η̃L(ω), (15)

z− ỹa,1(ω) − k(1 − λ)ỹa,2(ω) = 0, (16)

zR+ ỹs,N (ω) − k(1 + λ)ỹs,N−1(ω) = √
2η̃R(ω), (17)

z− ỹa,N (ω) − k(1 − λ)ỹa,N−1(ω) = 0, (18)

where zb+ = −m0ω
2 + kp + 2k(1+ λ) − 2�̃+

b (ω), and z− = −m0ω
2 + kp + 2k(1− λ) for

b = L, R. Here, η̃b(ω) = (1/2π)
∫∞
−∞ dt ηb(t)eiωt . It is also possible to apply the symmetric

and anti-symmetric mode transformation first in the time-domain, and then perform the
Fourier transforms to these modes. The application of Fourier transforms is only allowed for
these modes when they are in steady state. Thus, the aforementioned Eqs. 15 and 17 for the
symmetric modes are valid in both the stable and unstable regime as these modes with real
frequencies remain bounded at long time even in the unstable regimeof the network.However,
the Eqs. 16 and 18 are only correct for the network in the stable regime.We can formally write
the solution of the symmetric modes as Ỹs(ω) = G+

s (ω)η̃s(ω), where Ỹs and η̃s are column
vectors of dimension N : Ỹs = (ỹs,1, ỹs,2, . . . ỹs,N )T and η̃s = (

√
2η̃L , 0, . . . , 0,

√
2η̃R)T ,

and the retarded Green’s function G+
s = Z−1

s /λ+ with λ+ = k(1+ λ). Here, Zs is a N × N
symmetric tridiagonal matrix whose offdiagonal elements are −1 and diagonal elements
excluding the first and last ones are (−m0ω

2 + kp)/λ+ + 2. The first and last diagonal
elements of Zs are zL+/λ+ and zR+/λ+, respectively.

The steady-state heat current 〈JI〉 after noise averaging over JI(t) in Eq. 8 reads

〈JI〉 =
∫ ∞

−∞
dω 4�ω

π
|[G+

s (ω)]1,N |2�̃L(ω)�̃R(ω)( fL − fR), (19)

where �̃b(ω) are the imaginary part of �̃+
b (ω), and fb ≡ f (ω, Tb) = 1/(e�ω/KBT b − 1)

is the Bose distribution function for phonons of the left and right (b = L, R) heat baths
at temperature Tb. In deriving the current formula, we employ the fluctuation-dissipation
relations in the frequency domain:

〈η̃L(ω)η̃L(ω′)〉 = Im[�̃+
L (ω)]�
π

(1 + fL)δ(ω + ω′), (20)
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and a similar relation for the right heat bath. These fluctuation-dissipation relations are true
for both these white noise and Rubin baths with an appropriate self-energy contribution. We
can derive an explicit expression for the heat current fromEq. 19 in the linear response regime
with an applied temperature difference �T = TL − TR  T ≡ (TL + TR)/2. Expanding
the phonon distributions f (ω, Tb) about the mean temperature T , we get

〈JI〉 = 4kB�T

π

∫ 2
√
k0

−2
√
k0
dω

[(
�ω

2kBT

)2

csch2
(

�ω

2kBT

)

×�̃L (ω)�̃R(ω)|[G+
s (ω)]1,N |2

]
. (21)

We can find an analytical expression for heat current in the high-temperature classical regime
by taking (�ω/2kBT )2csch2(�ω/2kBT ) → 1. We get a relatively compact formula of the
steady-state classical heat current 〈J clI 〉 by taking m0 = 1, kp = 0, k(1 + λ) = k0, and
γL = γR = γ for the Rubin baths:

〈J clI 〉 = 4kB�T

π

∫ 2
√
k0

−2
√
k0
dω |[G+

s (ω)]1,N |2 ω2γ 4

k30

(
1 − ω2

4k0

)
. (22)

The required Green’s function element can be found as |[G+
s (ω)]1,N | = 1/(λ+|detZs |).

Applying the methods from Refs. [38, 44] for tridiagonal symmetric matrix as explained
in detail in Appendix A, we can find a simple form of |detZs | in the large N limit with a
parametrization ω2 = 4k0 sin2(q/2) to write

〈J clI 〉 = kB�T
√
k0

π

∫ π

0
dq

cos(q/2) sin2 q

ϒ −  cos(2q)

= kB�T
√
k0

π

⎛
⎜⎜⎜⎜⎝1 −

∑
s=±1

s(ϒ − ) tan−1

[
2
√

√
−2+s

√
2ϒ̃

]

2
√
2ϒ̃

√
−2 + s

√
2ϒ̃

⎞
⎟⎟⎟⎟⎠ , (23)

where ϒ = k40 − 2k20γ
2 + 4γ 4, = 2k20γ

2 and ϒ̃ = ϒ + . The system-size independent
thermal current is a signature of ballistic heat transport in the harmonic networks of oscillators.
The expression in Eq. 23 is valid for different values of λ giving rise to stable and unstable
phases.

We also derive an analytical formula of the thermal current in the linear response regime at
high temperature for arbitrary m0, kp, k, and λ. We give its derivation in Appendix A. Next,
we discuss the features of 〈JI〉 at low-temperature quantum regime. The T -dependence of
〈JI〉 can be extracted from the following expression by considering that only low-frequency
(or wavevector) modes contribute in heat current when T → 0. The quantum heat current

〈JI〉 = kB�T

π

∫ π

−π

dq

∣∣∣∣dω

dq

∣∣∣∣ |[G+
s (q)]1,N |2 4m0ω

2γ 4

k30

×
(
1 − m0ω

2

4k0

)(
�ω

2kBT

)2
csch2

(
�ω

2kBT

)
, (24)

where ω2 = (kp +4k(1+λ) sin2(q/2))/m0. We determine T -dependence of 〈JI〉 by finding
the leading q-dependence of |[G+

s (q)]1,N |2 in the large N limit, and performing a scaling
analysis of Eq. 24. In the pinned (massive scalar fields) case when kp �= 0, for Rubin baths,
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Fig. 3 Temperature dependence of the scaled heat current 〈JI〉/〈JclI 〉 with a single bath at each boundary
for different pinning kp and bath coupling γ . The inset shows features at low temperature for three different
parameter regimes (see text). The temperature is in units of (�

√
k/m0)/kB

we find 〈JI〉 ∼ (e−�ω0/(kBT ))/T 1/2 with ω0 = √
kp/m0 (see Appendix A). For unpinned

(massless scalar fields) case when kp = 0, 〈JI〉 ∼ T 3 when 2γ 2 �= k0λ+ and 〈JI〉 ∼ T
when 2γ 2 = k0λ+ as shown in Appendix A. In Fig. 3, we plot the scaled heat current
〈JI〉/〈J clI 〉 with temperature when (i) kp/k = 0.5, γ /k = 0.2, (ii) kp = 0, γ /k = 0.2 for
2γ 2 �= k0λ+, and (iii) kp = 0, γ /k = √

2.4 satisfying 2γ 2 = k0λ+, with k0/k = 4, λ = 0.2
and m0 = � = kB = 1. The inset shows the low-temperature features of 〈JI〉/〈J clI 〉. In the
numerical analysis, we set �T = 0.001. The above predicted T -dependencies of 〈JI〉 match
with the numerical results shown in Fig. 3, for these three different cases.

6 Two Baths at Each Boundary

The EOM in Eqs. 9 and 10 for the boundary oscillators connected to two different baths with
the same coupling strength read in terms of the symmetric and anti-symmetric modes in the
frequency domain as:

z̃L+ ỹs,1(ω) − k(1 + λ)ỹs,2(ω) = η̃s,L(ω), (25)

z̃L− ỹa,1(ω) − k(1 − λ)ỹa,2(ω) = η̃a,L(ω), (26)

z̃ R+ ỹs,N (ω) − k(1 + λ)ỹs,N−1(ω) = η̃s,R(ω), (27)

z̃ R− ỹa,N (ω) − k(1 − λ)ỹa,N−1(ω) = η̃a,R(ω), (28)

where z̃b± = −m0ω
2 + kp + 2k(1 ± λ) − �̃+

b (ω), η̃s,b(ω) = (η̃1,b(ω) + η̃2,b(ω))/
√
2,

and η̃a,b(ω) = (η̃1,b(ω) − η̃2,b(ω))/
√
2 for b = L, R. Similar to the case of single bath at

each boundary, the application of Fourier transforms to frequency domain is only allowed
for these modes in the steady-state, which occurs for the network in the dynamically sta-
ble regime. The EOM for the bulk oscillators in Eq. 12 remain the same for this case.
We apply Fourier transformation after switching to these symmetric and anti-symmetric
modes. We can again formally write the solution of both the symmetric and anti-symmetric
modes as Ȳs/a(ω) = Ḡ+

s/a(ω)η̄s/a(ω), where Ȳs/a and η̄s/a are column vectors of dimen-
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sion N : Ȳs/a = (ỹs/a,1, ỹs/a,2, . . . ỹs/a,N )T and η̄s/a = (η̃s/a,L , 0, . . . , 0, η̃s/a,R)T , and
the retarded Green’s functions Ḡ+

s = Z̄−1
s /λ+ and Ḡ+

a = Z̄−1
a /λ− with λ± = k(1 ± λ).

Here, Z̄s,a are N × N symmetric tridiagonal matrices whose offdiagonal elements are −1
and diagonal elements excluding the first and last ones are (−m0ω

2 + kp)/λ+,− + 2. The
first and last diagonal elements of Z̄s are z̃L+/λ+ and z̃ R+/λ+, respectively, and those for
Z̄a are z̃L−/λ− and z̃ R−/λ−, respectively.

By performing the noise averaging of JII in Eq. 11, we find the steady-state heat current
〈JII〉 in the stable regime of the network as:

〈JII〉 =
∫ ∞

−∞
dω
[
�ω

π
(|[Ḡ+

s (ω)]1,N |2 + |[Ḡ+
a (ω)]1,N |2) × �̃L(ω)�̃R(ω)( fL − fR)

]
, (29)

where we have applied the following fluctuation-dissipation relations for the noise averaging:

〈η̃α,L(ω)η̃β,L(ω′)〉 = δα,β

Im[�̃+
L (ω)]�
π

(1 + fL)δ(ω + ω′). (30)

We again work in the linear response regime for �T  T to derive an analytical expression
of 〈JII〉. Expanding the phonon distributions f (ω, Tb) about the mean temperature T , from
Eq. 29 we obtain

〈JII〉 = kB�T

π

(∫ ω1+

−ω1+
dω|[Ḡ+

s (ω)]1,N |2 +
∫ ω1−

−ω1−
dω|[Ḡ+

a (ω)]1,N |2
)

×
[
�̃L(ω)�̃R(ω)

(
�ω

2kBT

)2

csch2
(

�ω

2kBT

)]
, (31)

whereω1± = √(kp + 4k(1 ± λ))/m0. In the high-temperature classical regime for theRubin
baths, using Eq. 14, we derive from Eq. 31

〈JclII 〉 = kB�T

π

(∫ ω1+

−ω1+
dω|[Ḡ+

s (ω)]1,N |2 +
∫ ω1−

−ω1−
dω|[Ḡ+

a (ω)]1,N |2
)

m0ω
2γ 4

k30

(
1 − m0ω

2

4k0

)
.

(32)

Wefind the analytical expression of [Ḡ+
s/a(ω)]1,N in the large N limit followingRefs. [38, 44],

and then perform the integrals in Eq. 32 to write long analytical formulas for the symmetric
and anti-symmetric mode contributions to 〈J clII 〉 in Eq. B76 of Appendix B. In addition,
〈J clII 〉 is independent of N indicating ballistic heat transport in the harmonic network for
such a bath coupling. We compare 〈J clII 〉 to 〈J clI 〉 with increasing λ in the stable regime
of the network for similar parameters of the network and the bath coupling strengths γ in
Figs. 4, 5. In general, 〈J clII 〉 is slightly larger than 〈J clI 〉 for smaller λs till a specific value of λ

(denoted as λa) depending on the value of γ (see Fig. 5). Two baths at each edge facilitate the
thermalization of the network better than a single bath at each edge, thus resulting in higher
heat transport in the two baths case.We further observe from Eq. B75 that the anti-symmetric
mode contribution to 〈J clII 〉 vanishes at λ = 1. This is due to the vanishing group velocity of
the anti-symmetric modes at λ = 1.

For a given value of γ , we determine the specific coupling strength λa , at which 〈J clII 〉
exhibits a non-analytic behavior when kp = 0. The value of λa is obtained analytically by
solving the equation γ 3 + kk0γ (λ − 1) = 0, which follows from the condition ξa− = 1 (see
Eq. B78 in Appendix B), implying λa = 1 − (γ 2/kk0). At λa , the analytical expression for
the classical current (see Eq. B76 of Appendix B) diverges and 〈J clII 〉 is properly defined in
the stable regime only upto λa as shown in Fig. 5. In other words, the anti-symmetric part of
〈J clII 〉 is properly defined only in the regime 0 < λ < λa . Thus, the bath coupling γ reduces
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Fig. 4 Comparison between the high-temperature classical heat currents 〈JclI 〉 (dashed lines) and 〈JclII 〉 (solid
lines), (the y-axis represents the heat currents multiplied by the common factor π/(kB�T ) in the log scale),
with an increasing coupling λ between the fields for different bath coupling strengths γ (= 0.8, 0.5, 0.2 for
upper to lower plots). The parameter γ is in units of k. We set kp = 0.5k, k0 = 4k andm0 = k = � = kB = 1

in the numerical analysis. Here, 〈JclII 〉 can be defined properly only upto the critical coupling λb ≈ 1+(kp/4k),
which is the large-N limit of λc

Fig. 5 Comparison between the high-temperature classical heat currents 〈JclI 〉 (dashed lines) and 〈JclII 〉 (solid
lines), (the y-axis represents the heat currentsmultiplied by the common factorπ/(kB�T )), with an increasing
coupling λ between the fields for fixed γ = 0.2k and for both zero and nonzero kp values.We set either kp = 0

(blue) or kp = 0.5k (black) and k0 = 4k,m0 = k = � = kB = 1 in the numerical analysis. Here, 〈JclII 〉 is
again defined properly upto a critical coupling strength λa = 1− (γ 2/kk0) and λb ≈ 1+ (kp/4k) for kp = 0
and kp �= 0, respectively. Notice that the value of current is slightly large for kp = 0 in both cases

the critical coupling strength of the open network by a factor γ 2/kk0 compared to that of the
closed network λc = 1 (for kp = 0 and N → ∞). For kp �= 0, 〈J clII 〉 does not exhibit any
such non-analytic behavior. Nevertheless, 〈J clII 〉 falls around λa even when kp �= 0 due to
decreasing contribution of the anti-symmetric modes to 〈J clII 〉 with increasing λ.

We finally discuss the features of 〈JII〉 at low temperature quantum regime. It can be
determined from 〈JII〉 in Eq. 31. We could not calculate the integration in Eq. 31 for an
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arbitrary temperature. Nevertheless, we can extract T -dependence of 〈JII〉 by finding leading
ω-dependence of |[Ḡ+

s/a(ω)]1,N |2 in the large N limit, and performing a scaling analysis of

Eq. 31. For Rubin baths, we again find in Appendix B, 〈JII〉 ∼ (e−�ω0/(kBT ))/T 1/2 with
ω0 = √kp/m0 for pinned (massive scalar fields) case when kp �= 0, which is similar to that
for single bath at each boundary and for thewhite noise baths (seeAppendix C). For unpinned
(massless scalar fields) case when kp = 0, 〈JII〉 ∼ T if either γ 2 = k0λ+ or γ 2 = k0λ−, and
〈JII〉 ∼ T 3 when γ 2 �= k0λ+ �= k0λ− as shown in Appendix B. The corresponding white
noise bath cases are discussed in Appendices C and D.

7 Summary and Outlook

We have explored heat conduction through a network of different types of oscillators repre-
senting a coupled scalar field theory driven by heat baths with different temperatures placed
at the boundaries. The dynamical matrix of the network is non-Hermitian and undergoes
a stability-to-instability transition at EPs as the coupling strength between the scalar fields
(or different types of oscillators) increases. The unstable regime of the dynamical matrix is
marked by the emergence of inverted oscillator modes in the network. Consequently, the open
network never obtains a steady state in this unstable regime, and the heat current is unbounded
for arbitrary bath coupling at the boundaries. In this work, we engineered a unique bath cou-
pling where a single bath is connected to two fields at each edge with the same strength,
leading to a finite steady-state heat conduction in the network for any arbitrary coupling
strength between the fields. This occurs as the symmetric modes carry the heat, and the heat
current is independent of the asymmetric modes, which becomes unbounded in the unstable
regime. We also studied the coupling of two fields to two separate baths at each boundary.
In this case, heat is carried by both the symmetric and anti-symmetric modes; thus, the heat
current is well-behaved only in the stable regime.

We compared heat conduction through the network for collective versus individual cou-
pling of fields to baths at the boundaries. Individual bath coupling of a boundary oscillator
is primarily used in studying heat conduction through ordered or disordered networks [41].
We have demonstrated an exciting distinction between different types of bath coupling, and
these differences can be significant in the presence of stronger coupling between the net-
work’s modes and the baths. In contrast to existing numerical studies in complex networks
with multiple modes [32, 41], our explicit analytical formulae in the thermodynamic limit
can further aid in understanding the role of various parameters in controlling heat transport
in networks with different bath coupling and bath models. One immediate extension of our
study could be to explore how heat conduction and the stability-to-instability transition vary
due to different types of disorder in the parameters of the network.

Further, we have assumed the fields or oscillator displacements are small for our quadratic
modeling of the system Hamiltonian. However, such an assumption breaks down in the
unstable regime when the displacement becomes unbounded, and we need to incorporate
nonlinear terms in the Hamiltonian [45]. The nonlinear interaction can regularize the heat
current in the unstable regime, even for general system-bath couplings [46].

The stability-to-instability transition at the EPs of the non-Hermitian dynamical matrix in
our present model is unrelated to a topological phase transition. Nevertheless, recent studies
with various quadratic Hermitian bosonic models, whose dynamical matrices resemble non-
Hermitian Hamiltonians, have revealed exciting topological phases and phase transitions
[21–25]. Investigating heat conduction in such quadratic Hermitian bosonic models could
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be applied to identify topological phases and phase transitions in the related non-Hermitian
Hamiltonians [47, 48]. Identifying topological phases and phase transitions in non-Hermitian
Hamiltonians is a key challenge of significant interest [15, 16, 18, 49, 50]. Studying heat
transport in this direction is significant and constitutes one of our future goals.

Appendix A Single Rubin Bath at Each Boundary

In this appendix, we consider that both types of oscillators at the left or the right end of the
network are connected to a single Rubin bath with the same coupling strength. Thus, the
couplings between the network and the baths are modeled by the Hamiltonian:

Hc1 = −γL yL,1(y1,1 + y2,1) − γR yR,1(y1,N + y2,N ). (A1)

Here, yL,n and yR,n represent the left and right bath variables, and γL and γR are the coupling
strengths between the left and right ends of the system and the corresponding baths, respec-
tively. The Rubin baths are modeled as a chain of finite number (Nb) of harmonic oscillators
with mass m0 and spring constant k0 as given by the Hamiltonian:

Hb =
Nb∑
n=1

p2b,n
2m0

+
Nb∑
n=0

k0(yb,n − yb,n+1)
2

2
, (A2)

with b = L, R. The total Hamiltonian for the network, two baths and their couplings is
HT = H + HL + HR + Hc1. We write the equations of motion (EOM) for the network
variables as:

m0 ÿα,n = −kp yα,n − k
[
(2yα,n − yα,n−1 − yα,n+1)

+ λ(2yβ,n − yβ,n+1 − yβ,n−1)
]

+ γL yL,1δn,1 + γR yR,1δn,N , (A3)

for α �= β, α, β = 1, 2, n = 1, 2, . . . N and yα,0 = yα,N+1 = 0. The EOM for left and right
bath variables are

m0 ÿL,1 = −k0(2yL,1 − yL,2) + γL(y1,1 + y2,1),
m0 ÿR,1 = −k0(2yR,1 − yR,2) + γR(y1,N + y2,N ),

m0 ÿb,n = −k0(2yb,n − yb,n−1 − yb,n+1), (A4)

for b = L, R, n = 2, 3, · · · , Nb. In order to solve the EOM for the bath variables,
we rewrite the bath Hamiltonians in Eq. A2 in terms of the normal modes Yb,r , by
using the transformations, yb,n = ∑Nb

r=1Ub,nrYb,r and pb,n = ∑Nb
r=1Ub,nr Pb,r , where

Ub,nr = (
√
2/(Nb + 1)) sin [πnr/(Nb + 1)]. Thus, we have

Hb =
Nb∑
r=1

P2
b,r

2m0
+ 1

2
m0

2
b,r Y

2
b,r , (A5)

for b = L, R, where

2
b,r = 2

r = 4k0
m0

sin2
(

πr

2(Nb + 1)

)
. (A6)

123



  123 Page 14 of 33 T. R. Vishnu et al.

In the last line, we assume NL = NR . Using these normal modes, we rewrite the coupling
Hamiltonian in Eq. A1 as:

Hc1 = −
[
γL(y1,1 + y2,1)

NL∑
r=1

CL,r YL,r + γR(y1,N + y2,N )

NR∑
r=1

CR,r YR,r

]
. (A7)

Here, Cb,r = Ub,1r . In terms of the aforementioned normal modes, we rewrite the EOM in
Eq. A3 as:

m0 ÿα,n = −kp yα,n − k
[
(2yα,n − yα,n−1 − yα,n+1) + λ(2yβ,n − yβ,n+1 − yβ,n−1)

]

+ γL

NL∑
r=1

CL,r YL,r δn,1 + γR

NR∑
r=1

CR,r YR,rδn,N . (A8)

The EOM for the normal modes of baths follow from the Hamiltonians in Eqs. A5 and A7:

m0ŸL,r = −m0
2
r YL,r + γLCL,r (y1,1 + y2,1),

m0ŸR,r = −m0
2
r YR,r + γRCR,r (y1,N + y2,N ). (A9)

We solve the above equations for the baths’ modes at time t > t0 with some initial conditions
for b = L, R:

Yb,r (t) = f +
r (t − t0)Yb,r (t0) + g+

r (t − t0)Ẏb,r (t0)

+
∫ t

t0
dt ′
[
g+
r (t − t ′)γbCb,r

√
2

m0
× (ys,1(t

′)δb,L + ys,N (t ′)δb,R)
]
, (A10)

where f +
r (t) = cos(r t)θ(t), g+

r (t) = sin(r t)θ(t)/r , and the symmetric modes ys,n =
(y1,n + y2,n)/

√
2. Here, θ(t) is the Heaviside function. We can further write the EOM for the

network variables in Eq. A8 at the boundaries in terms of the symmetric and anti-symmetric
modes (ya,n = (y1,n − y2,n)/

√
2) as:

m0 ÿs,1 = −kp ys,1 − k
[
(2ys,1 − ys,2) + λ(2ys,1 − ys,2)

]+ √
2γL

NL∑
r=1

CL,r YL,r ,

m0 ÿs,N = −kp ys,N − k
[
(2ys,N − ys,N−1) + λ(2ys,N − ys,N−1)

]
+ √

2γR

NR∑
r=1

CR,r YR,r ,

m0 ÿa,1 = −kp ya,1 − k
[
(2ya,1 − ya,2) − λ(2ya,1 − ya,2)

]
,

m0 ÿa,N = −kp ya,N − k
[
(2ya,N − ya,N−1) − λ(2ya,N − ya,N−1)

]
. (A11)

We notice that the EOM of the anti-symmetric modes do not depend on the bath variables.
Nevertheless, they still diverge in time in the inverted oscillator (unstable) regime. Plugging
the formal solutions of the left bath variables in Eq. A10 in the EOM for the symmetric modes
of the network, we get

m0 ÿs,1 = −kp ys,1−k(2ys,1−ys,2+λ(2ys,1−ys,2))+
∫ t

t0
dt ′�+

L (t−t ′)2ys,1(t ′)+
√
2ηL(t).

(A12)
Here, we identify the operator ηL(t) as a noise from the left bath due to its dependence on the
initial condition of the bath variables, and �+

L (t) as a self-energy arising from the coupling
of the network to the left bath:
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ηL(t) = γL

NL∑
r=1

CL,r

(
f +
r (t − t0)YL,r (t0) + g+

r (t − t0)ẎLβ (t0)
)
, (A13)

�+
L (t) =

NL∑
r=1

γ 2
LC

2
L,r

m0
g+
r (t). (A14)

Similarly, using the noise and self-energy for the right bath, we obtain:

m0 ÿs,N = −kp ys,N − k
[
(2ys,N − ys,N−1) + λ(2ys,N − ys,N−1)

]

+
∫ t

t0
dt ′�+

R (t − t ′)2ys,N (t ′) + √
2ηR(t). (A15)

The above equations along with those for the anti-symmetric modes in Eq. A11 are the EOM
in Eqs. 6 and 7 in terms of the original system variables after letting t0 → −∞. After Fourier
transformation to the frequency domain, the EOM in Eqs. A12, A15 and A11 transform into
Eqs. 15, 16, 17, and 18.

The self-energy due to bath coupling can be computed as

�̃+
b (ω) =

∫ ∞

0

∑
r

γ 2
b C

2
b,r

m0

sin(r t)

r
eiωt dt

= lim
ε→0

∫ ∞

0

∑
r

γ 2
b C

2
b,r

m0r

eir t − e−ir t

2i
eiωt−εt dt

= γ 2
b

k0

[(
1 − m0ω

2

2k0

)
+ i

(√
m0ω√
k0

(
1 − m0ω

2

4k0

)1/2
)]

, (A16)

for b = L, R. The properties of noises are determined by the equilibrium conditions of
the isolated baths. Thus, 〈ηb(t)〉 = 0, and the noise correlation is given by the fluctuation-
dissipation relation as

〈
η̃b(ω)η̃b′(ω′)

〉 = �̃b(ω)
�

π
(1 + fb)δb,b′δ(ω + ω′), (A17)

where �̃b(ω) = Im(�̃+
b (ω)), and the equilibrium phonon distribution functions fb ≡

f (ω, Tb) = 1/(e�ω/kBTb − 1), for b, b′ = L, R. Here, 〈. . . 〉 denotes an expectation over
isolated baths’ equilibrium distribution.

A.1 Linear response heat current

We define the heat current at the left boundary of the network as the rate of work done by
the left bath on the network, which is given by the expression (see Eq. 8):

JI = −
[
ẏ1,1
( ∫ t

−∞
dt ′�+

L (t − t ′)
(
y1,1(t

′) + y2,1(t
′)
)+ ηL

)

+ ẏ2,1
( ∫ t

−∞
dt ′�+

L (t − t ′)
(
y1,1(t

′) + y2,1(t
′)
)+ ηL

)]
. (A18)
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We express the noise averaged heat current in terms of the symmetric modes in the frequency
domain as:

〈JI〉 = −
∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′)t iω

〈
ỹs,1(ω)

(√
2η̃L(ω′) + 2�̃+

L (ω′)ỹs,1(ω′)
) 〉

.

(A19)
Here,

ỹs,1(ω) = [G+
s (ω)]1,1

√
2η̃L + [G+

s (ω)]1,N
√
2η̃R, (A20)

where, G+
s (ω) is the inverse of the tri-diagonal matrix Z :

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zL+ −λ+ 0 · · · 0

−λ+ z+ −λ+
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... −λ+ z+ −λ+
0 · · · · · · −λ+ zR+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A21)

Here, zb+ = −m0ω
2 + kp +2λ+ −2�̃+

b (ω), z+ = −m0ω
2 + kp +2λ+, and λ+ = k(1+λ)

for b = L, R. Thus, we find from Eq. A19:

〈JI〉 = −
∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′)t2iω ×

〈(
[G+

s (ω)]1,1η̃L(ω) + [G+
s (ω)]1,N η̃R(ω)

)
(
η̃L(ω′) + 2�̃+

L (ω′)
([G+

s (ω′)]1,1η̃L(ω′) + [G+
s (ω′)]1,N η̃R(ω′)

))〉
. (A22)

The contribution of the right bath to 〈JI〉 in Eq. A22 can be obtained using the fluctuation-
dissipation relation for the noise averaging (see Eq. A17) as:

〈J R
I 〉 = −

∫ ∞

−∞
dω

[
4|[G+

s (ω)]1,N |2�̃L(ω)�̃R(ω)
�ω

π
(1 + fR)

]
. (A23)

Similarly, we can find the contribution from the left bath to 〈JI〉 in Eq. A22. We choose
�̃L(ω) = �̃R(ω) (which are nonzero only when |ω| < 2

√
k0) by setting γL = γR = γ to

get

〈JI〉 =
∫ 2

√
k0

−2
√
k0
dω

[
4|[G+

s (ω)]1,N |2m0ω
2γ 4

k30

(
1 − m0ω

2

4k0

)
�ω

π
( fL − fR)

]
. (A24)

In the linear response regime, after expanding the Bose functions, we get the quantum heat
current (see Eq. 24)

〈JI〉 = kB�T

π

∫ 2
√
k0

−2
√
k0
dω

[
4|[G+

s (ω)]1,N |2m0ω
2γ 4

k30(
1 − m0ω

2

4k0

)(
�ω

2kBT

)2

csch2
(

�ω

2kBT

)]
. (A25)

In the high-temperature limit, we obtain the classical heat current in Eq. 22. Next, we find
an analytical expression for this classical heat current in the thermodynamic limit.
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A.2 Thermodynamic Limit and an Analytic Expression for Classical Heat Current

To find an analytical expression for the classical current in Eq. 22, we need to manipulate
the properties of the matrix Z = λ+Zs in the large N limit. Given N number of lattice sites
in the network, Zs is an N × N tridiagonal matrix of the form given in Sect. 5, and we
define ã = (−m0ω

2 + kp)/λ+ + 2 and εL,R = 2�̃+
L,R/λ+. We recall that the expression for

quantum heat current in Eq. A24 involves the matrix element [G+
s ]1,N , which is given by the

inverse of Z matrix: G+
s = Z−1 = Z−1

s /λ+. From this, we get:

|[G+
s ]1,N |2 = 1

λ2+| det[Zs]N |2 . (A26)

The determinant of a tridiagonal matrix can be obtained through a recursion relation. If all
the diagonal entries are ã, then the determinant of an N × N matrix is given by the recursion
relation:

det([Zs]N ) = ã det([Zs]N−1) − det([Zs]N−2). (A27)

Wemay simplify the expression for the determinant by assuming ã = 2 cos q . To simplify this
calculation, we further assume ω2 = 4k0 sin2(q/2), which restricts the following parameters
as: m0 = 1, kp = 0 and λ+ = k0. With these simplifications, the determinant takes the form

det[Zs]N = �N = (A(q) sin(Nq) + B(q) cos(Nq))

sin q
. (A28)

Here,

A(q) = −(εL + εR) + (1 + εLεR) cos(q), B(q) = (1 − εLεR) sin(q). (A29)

From this, we find that

|�N |2 = (|A|2 + |B|2)(1 + r sin(2Nq + φ))

2 sin2 q
, (A30)

with r cosφ = (AB∗ + A∗B)/(|A|2 + |B|2), and r sin φ = (|B|2 − |A|2)/(|A|2 + |B|2).
By substituting ω2 = 4k0 sin2(q/2), we get the expression for the classical heat current:

〈J clI 〉 = kB�T

π

∫ π

−π

dq
[
|[G+

s (q)]1,N |2 ×√k0 cos
(q
2

)(2γ 2

k0

)2
sin2(q)

]
. (A31)

For the Rubin baths, we can write the self-energy as �̃+
b (q) = (γ 2/k0)eiq [see Eq. A16

along with ω2 = 4k0 sin2(q/2)]. Thus, we can express

A(q) = −4γ 2

k20
cos q+

(
1 + 4γ 4

k40
cos 2q

)
cos q+i

(
−4γ 2

k20
sin q +

(
4γ 4

k40
sin 2q

)
cos q

)
,

(A32)
and

B(q) =
(
1 − 4γ 4

k40
cos 2q

)
sin q − i

4γ 4

k40
sin 2q sin q. (A33)

Employing the above expressions, we rewrite Eq. A31 as

〈J clI 〉 = kB�T

π

∫ π

−π

dq
√
k0

k20 |�N |2 cos
(q
2

)(2γ 2

k0

)2
sin2(q)
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= kB�T 16γ 4

πk30
√
k0

∫ π

0
dq
[cos ( q2

)
sin4(q)

(|A|2 + |B|2) × 1

(1 + r sin(2Nq + φ))

]
. (A34)

In the large N limit, we can simplify the above integral using the identity [38],

lim
N→∞

∫ π

0
dq

g1(q)

1 + g2(q) sin(Nq)
=
∫ π

0
dq

g1(q)

(1 − g2(q)2)1/2
, (A35)

where, we identify by comparing the above equation with Eq. A34, g2(q) = r and

g1(q) = cos(q/2) sin4(q)

(|A|2 + |B|2) . (A36)

Using r (see below of Eq. A30 for definitions) and the re-definitions of A = a1 + ia2 and
B = b1 + ib2, we have

(1 − g2(q))1/2 = 2(a1b2 − a2b1)

|A|2 + |B|2 . (A37)

Thus, in the large N limit, the integrand in Eq. A34 simplifies to
∫ π

0
dq

g1(q)

(1 − g2(q))1/2
=
∫ π

0
dq

cos(q/2) sin4 q

2(|a1b2 − a2b1|) . (A38)

We further derive using A(q) and B(q) (see Eq. A29),

2(a1b2 − a2b1) = 8γ 2 sin2 q(ϒ −  cos(2q))

k60
,

ϒ = k40 − 2k20γ
2 + 4γ 4 and  = 2k20γ

2. (A39)

We thus write the classical heat current as

〈J clI 〉 = kB�T

π

2γ 2k30√
k0

∫ π

0

cos(q/2) sin2 q dq

ϒ −  cos(2q)

= kB�T
√
k0

π

∫ 1

−1
dx

√
1+x
2

√
1 − x2

ϒ − (2x2 − 1)
, (A40)

where we use the substitution x = cos q in the last line. We find Eq. 23 by performing the
above integral. Numerical integration of the integral in Eq. A34 (for large N limit) agrees
with the value that obtained directly by numerically inverting the matrix for sufficiently large
N .

A.3 General Case: Analytical Expression for Classical Current

We may now consider a more general case where we do not restrict the parameters as
m0 = 1, kp = 0 and k0 = λ+. We start with the same substitution ã = 2 cos q . However,
now ω2 �= 4k0 sin2(q/2), since m0 �= 1, kp �= 0 and k0 �= λ+. We employ the expression of
�̃+(ω) in Eq. A16, and the definitions of A and B in Eq. A29 to obtain

2(a1b2 − a2b1) =
4γ 2

√
(kp + 4λ+ sin2(q/2))(4k0 − kp − 4λ+ sin2(q/2))

k40
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×
(
4γ 4 + k20λ

2+ − 2λ+γ 2(cos q)(2k0 − kp − 4λ+ sin2(q/2))
)
sin q

λ3+
.

(A41)

For a nonzero kp , we express the linear response classical heat current as:

〈J clI 〉 = kB�T

π

∫ ω1+

−ω1+
dω|[G+

s (ω)]1,N |2 × 4m0ω
2γ 4

k30

(
1 − m0ω

2

4k0

)
, (A42)

where ω1+ = √(kp + 4λ+)/m0. Substituting ω2 = (kp + 4λ+ sin2(q/2))/m0 in the above
expression, we get

〈J clI 〉 = kB�T

π

∫ π

−π

dq
[ ∣∣∣∣dω

dq

∣∣∣∣ |[G+
s (ω)]1,N |2 × 4m0ω

2γ 4

k30

(
1 − m0ω

2

4k0

)]
. (A43)

where, |dω/dq| = (λ+ sin q)/(m0ω). Applying the expression for �N in the large N limit
(as in Eq. A35), we re-express the above current as

〈J clI 〉 = kB�T

π

∫ π

0
dq

(sin2 q)γ 2λ2+
√
4k0 − kp − 4λ+ sin2(q/2)

√
m0
(
4γ 4 + k20λ

2+ − 2γ 2λ+(cos q)(2k0 − kp − 4λ+ sin2(q/2))
) ,

(A44)
where we use Eq. A41 along with the form of Eq. A37. We substitute x = cos q to get

〈J clI 〉 = kB�T

π
√
m0

∫ 1

−1

dx γ 2λ2+
√
1 − x2

√
4k0 − kp − 2λ+(1 − x)

4γ 4 + k20λ
2+ − 2γ 2λ+x(2k0 − kp − 2λ+(1 − x))

. (A45)

The above definite integral can be expressed in terms of complete and incomplete elliptic
integrals of first (K and F), second (E) and third kind (�). Thus, we obtain

〈J clI 〉 = kB�T

4π
√
m0
√
kp − 4k0 + 4λ+

[−2(kp + 4λ+ − 4k0)(E(φ, ζ ) + E(ζ ))

+4(λ+ − k0)(F(φ, ζ ) + K (ζ ))

+(kp + 2λ+ − 2k0) (�(ξ−, φ, ζ ) + �(ξ+, φ, ζ ) + �(ξ−, ζ ) + �(ξ+, ζ ))

+
γ 2
(
4k20 − 4k0(kp + 2λ+) + k2p + 4kpλ+ − 4λ2+

)
+ 2k20λ

2+ + 8γ 4

√
4γ 2k20λ

2+ + γ 4(−2k0 + kp + 2λ+)2 + 16γ 6

× (�(ξ−, φ, ζ ) − �(ξ+, φ, ζ ) + �(ξ−, ζ ) − �(ξ+, ζ ))
]
, (A46)

where

φ = i sinh−1

(√
4k0 − kp − 4λ+

kp − 4k0

)
, ζ = kp − 4k0

kp + 4λ+ − 4k0
,

ξ± = 2γ 2(kp − 4k0)

γ 2(−6k0 + kp + 2λ+) ±
√
2λ2+ + γ 4(−2k0 + kp + 2λ+)2 + 16γ 6

. (A47)
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A.4 Temperature Dependence of Low-Temperature 〈JI〉

Here, we determine the temperature dependence of the low-temperature heat current 〈JI〉.
The quantum current 〈JI〉 in the linear response regime reads from Eq. A25 as:

〈JI〉 = 4kB�T

π

∫ π

−π

dq

[∣∣∣∣dω

dq

∣∣∣∣ |[G+
s (q)]1,N |2m0ω

2γ 4

k30

×
(
1 − m0ω

2

4k0

)(
�ω

2kBT

)2

csch2
(

�ω

2kBT

)]
, (A48)

where ω2 = (kp + 4λ+ sin2(q/2))/m0. Since the low-frequency or low-wavevector modes
mostly contribute in heat conduction at low temperature, we determine the temperature
dependence of low-temperature 〈JI〉 by studying the above integrand in the limit of small
ω or q . We rewrite the integrand in Eq. A48 in the large N limit in terms of the system
parameters as:

〈JI〉 = �
2�T

4πkB
√
m0T 2

∫ π

0
dq
[ γ 2λ2+ sin2(q)

√
4k0 − m0ω2

� − 2γ 2λ+ cos(q)(2k0 − m0ω2)
ω2csch2

(
�ω

2kBT

)]
,

(A49)
where, � = (4γ 4 + k20λ

2+). We take the limit of small q for kp �= 0 to find:

〈JI〉 ≈ �
2�T e

− �ω0
kB T

πkB
√
m0T 2

∫ π

0
dq
[ γ 2λ2+q2

√
4k0 − kp − λ+q2

(� − 2γ 2λ+(1 − q2/2)(2k0 − kp − λ+q2))

×
(
kp
m0

+ λ+q2

m0

)
e
− �λ+q2

2kB Tm0ω0

]
, (A50)

where we approximate ω2 ≈ (kp + λ+q2)/m0 and csch2 [�ω/(2kBT )] ≈ 4e−�ω0/(kBT )

e−�λ+q2/(2kBTm0ω0). By substituting x = (�λ+q2)/(2kBTm0ω0), we obtain the leading-
order T -dependence of 〈JI〉 for kp �= 0 as:

〈JI〉 ∼ e
−�ω0
kB T

√
T

with ω0 =
√

kp
m0

. (A51)

For kp = 0, we notice that ω ∝ q for small q . We substitute x = (�ω)/(2kBT ) in Eq. A49.
Moreover, the denominator of the integrand in Eq. A49 can be re-expressed in the small q
limit as

(2γ 2 − k0λ+)2 + (2k0λ+γ 2 + 2γ 2λ2+)q2. (A52)

Thus, analytically, we get 〈JI〉 ∼ T , when 2γ 2 = k0λ+ and 〈JI〉 ∼ T 3 when 2γ 2 �= k0λ+.
We verified these results numerically.

Appendix B Two Rubin Baths at Each Boundary

In this appendix, we consider the case where two types of oscillators at the left and right end
of the network are connected to two different Rubin baths. Thus, the network-bath coupling
is given by the Hamiltonian:

Hc2 = −γ
(1)
L y(1)

L,1y1,1 − γ
(2)
L y(2)

L,1y2,1 − γ
(1)
R y(1)

R,1y1,N − γ
(2)
R y(2)

R,1y2,N . (B53)
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Here, y(1)/(2)
L,n represent two different types of left bath variables (differentiated by the super-

scripts (1) and (2)), and y(1)/(2)
R,n represent those for the right baths. Moreover, γ

(1)/(2)
L and

γ
(1)/(2)
R are the coupling strengths between the left and right ends of the network and the

corresponding baths, respectively. The total Hamiltonian for the network and four baths
including the coupling is HT = H + H (1)

L + H (2)
L + H (1)

R + H (2)
R + Hc2. Here, H

(1)/(2)
b (for

b = L, R) are the Hamiltonians of two types of Rubin baths at each end, as defined in Eq. A2
of Appendix A. At first, we write down the EOM for the network variables in terms of the
normal modes of the bath variables (see Eq. A5) as:

m0 ÿα,n = −kp yα,n − k
[
(2yα,n − yα,n−1 − yα,n+1) + λ(2yβ,n − yβ,n+1 − yβ,n−1)

]

+γ
(1)
L

NL∑
r=1

CL,r Y
(1)
L,rδn,1δα,1 + γ

(1)
R

NR∑
r=1

CR,r Y
(1)
R,r δn,N δα,N

+γ
(2)
L

NL∑
r=1

CL,r Y
(2)
L,rδn,1δα,2 + γ

(2)
R

NR∑
r=1

CR,r Y
(2)
R,r δn,N δα,2, (B54)

for α �= β, α, β = 1, 2, n = 1, 2, . . . N and yα,0 = yα,N+1 = 0. Here, y(1)/(2)
b,n =∑Nb

r=1Ub,nrY
(1)/(2)
b,r and Cb,r = Ub,1r for b = L, R (see Appendix A for details). Simi-

larly, we obtain the EOM for the bath variables:

m0Ÿ
(1)/(2)
L,r = −m0

2
L,r Y

(1)/(2)
L,r + γ

(1)/(2)
L CL,r y1/2,1,

m0Ÿ
(1)/(2)
R,r = −m0

2
R,r Y

(1)/(2)
R,r + γ

(1)/(2)
R CR,r y1/2,N .

(B55)

Here, 2
b,r = 2

r = (4k0/m0) sin2 [πr/(2(Nb + 1))] are the normal frequencies assuming
NL = NR . Consequently, the formal solutions at t > t0 are:

Y (1)/(2)
b,r (t) = f +

r (t − t0))Y
(1)/(2)
b,r (t0) + g+

r (t − t0)Ẏ
(1)/(2)
b,r (t0)

+
∫ t

t0
dt ′
[
g+
r (t − t ′)

γ
(1)/(2)
b Cb,r

m0
× (y1/2,1(t

′)δb,L + y1/2,N (t ′)δb,R)
]
,

(B56)

where f +
r (t) = cos(r t)θ(t), g+

r (t) = sin(r t)θ(t)/r . Substituting these formal solu-
tions in Eq. B54 for the boundary variables imply Eqs. 9 and 10 after letting t0 → −∞,
provided we identify the noises η1/2,L(t) and self-energies �+

1/2,L(t) as:

η1/2,L(t) = γ
(1)/(2)
L

NL∑
r=1

CL,r

(
f +
r (t − t0)Y

(1)/(2)
L,r (t0) + g+

r (t − t0)Ẏ
(1)/(2)
L,r (t0)

)
, (B57)

and

�+
1/2,L(t) =

NL∑
r=1

(
γ

(1)/(2)
L

)2
C2
L,r

m0
g+
r (t). (B58)

Similar definitions hold for the noises η1/2,R(t) and self-energies�+
1/2,R(t) of the right baths.

Now, we rewrite these equations (assuming same coupling strengths γ
(1)
b = γ

(2)
b , which

implies �+
1,b = �+

2,b = �+
b for b = L, R) in terms of the symmetric and anti-symmetric

variables as:
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m0 ÿs,1 = −kp ys,1 − k[2ys,1 − ys,2 + λ(2ys,1 − ys,2)]
+
∫ t

t0
dt ′�+

L (t − t ′)ys,1(t ′) + ηs,L , (B59)

m0 ÿs,N = −kp ys,N − k
[
2ys,N − ys,N−1 + λ(2ys,N − ys,N−1)

]

+
∫ t

t0
dt ′�+

R (t − t ′)ys,N (t ′) + ηs,R . (B60)

Here, ηs/a,L = (η1,L(t) ± η2,L(t))/
√
2. Similarly, for the anti-symmetric variables, we get

m0 ÿa,1 = −kp ya,1 − k[2ya,1 − ya,2 − λ(2ya,1 − ya,2)]
+
∫ t

t0
dt ′�+

L (t − t ′)ya,1(t
′) + ηa,L , (B61)

m0 ÿa,N = −kp ya,N − k
[
2ya,N − ya,N−1 − λ(2ya,N − ya,N−1)

]

+
∫ t

t0
dt ′�+

R (t − t ′)ya,N (t ′) + ηa,R . (B62)

We notice that, letting t0 → −∞ and taking a Fourier transformation to the frequency
domain, the above EOM in Eqs. B59, B60, B61, and B62 transform into Eqs. 25, 27, 26, and
28, respectively.

B.1 Linear Response Heat Current

We define the heat current at the left boundary of the network as the rate of work done by
the baths, which is given by the expression in Eq. 11. It can be re-expressed in terms of
symmetric and anti-symmetric variables as

JII = −
[
ẏs,1ηs,L + ẏa,1ηa,L +

(
ẏs,1 + ẏa,1√

2

)∫ t

−∞
dt ′�+

L (t − t ′)
(
ys,1 + ya,1√

2

)

+
(
ẏs,1 − ẏa,1√

2

)∫ t

−∞
dt ′�+

L (t − t ′)
(
ys,1 − ya,1√

2

)]
. (B63)

Now going into the Fourier modes in the frequency domain, we have the noise averaged heat
current:

〈JII〉 = −
∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′)t

〈
iω ỹs,1(ω)η̃s,L(ω′) + iω�̃+

L (ω′)ỹs,1(ω)ỹs,1(ω
′)

+iω ỹa,1(ω)η̃a,L(ω′) + iω�̃+
L (ω′)ỹa,1(ω)ỹa,1(ω

′)
〉
. (B64)

From Eqs. 25, 26, 27, and 28, we notice that

ỹs,1 = [Ḡ+
s ]1,1

(
η̃1,L + η̃2,L√

2

)
+ [Ḡ+

s ]1,N
(

η̃1,R + η̃2,R√
2

)
,

ỹa,1 = [Ḡ+
a ]1,1

(
η̃1,L − η̃2,L√

2

)
+ [Ḡ+

a ]1,N
(

η̃1,R − η̃2,R√
2

)
. (B65)
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Here, Ḡ+
s/a are the inverses of the matrices Z̃ s/a , defined as

Z̃ s/a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̃L± −λ± 0 · · · 0

−λ± z̃± −λ±
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... −λ± z̃± −λ±
0 · · · · · · −λ± z̃ R±

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B66)

where, z̃b± = −m0ω
2 + kp + 2λ± − �̃+

b (ω), z̃± = −m0ω
2 + kp + 2λ± and λ± = k(1± λ)

for b = L, R. Notice that here, λ+ and λ− correspond to Z̃ s and Z̃ a , respectively. Now using
the fluctuation-dissipation relation (see also Eq. (A17) in Appendix A),

〈η̃a,b(ω)η̃a′,b′(ω′)〉 = �̃b(ω)�

π
(1 + fb)δb,b′δa,a′δ(ω + ω′), (B67)

where a, a′ = 1, 2, for noise averaging to get the right-part of the heat current as

〈J R
II 〉 = −

∫ ∞

−∞
dω
[
(|[Ḡ+

s (ω)]1,N |2+|[Ḡ+
a (ω)]1,N |2)×�̃L(ω)�̃R(ω)

�ω

π
(1+ fR)

]
. (B68)

Similarly, finding the contribution from the left baths implies the expression for the total
current as in Eq. 29. Now, we choose �̃L(ω) = �̃R(ω) (which are nonzero only when
|ω| < 2

√
k0) by setting γ

(1)/(2)
L = γ

(1)/(2)
R = γ to get

〈JII〉 =
∫ 2

√
k0

−2
√
k0

dω
[
(|[Ḡ+

s (ω)]1,N |2+|[Ḡ+
a (ω)]1,N |2)m0ω

2γ 4

k30

(
1 − m0ω

2

4k0

)
�ω

π
( fL− fR)

]
.

(B69)

In the linear response regime, we have

〈JII〉 = kB�T

π

∫ 2
√
k0

−2
√
k0
dω
[(

|[Ḡ+
s (ω)]1,N |2 + |[Ḡ+

a (ω)]1,N |2
)m0ω

2γ 4

k30

(
1 − m0ω

2

4k0

)

×
(

�ω

2kBT

)2
csch2

(
�ω

2kBT

)]
. (B70)

Next, we obtain an analytical expression for the classical current in the thermodynamic limit.

B.2 Thermodynamic Limit and an Analytic Expression for the classical Current

To find an analytical expression for the classical current, we manipulate the properties of
the matrices Z̃ s/a = λ± · Z̄s/a in the large N limit. Given N number of lattice sites in the
network, Z̄s/a matrices are N × N tridiagonal matrices of the form given in Sect. 6. Now,
we define ã± = ((−m0ω

2 + kp)/λ±)+ 2 and εL,R = �̃+
L,R/λ± for Z̄s and Z̄a , respectively.

Since these are tridiagonal matrices, we obtain

|[Ḡ+
s/a]1,N |2 = 1

(λ±)2| det[Z̄s/a]N |2 . (B71)
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We simplify the expression for determinant by assuming ã± = 2 cos q . This implies
m0ω

2
s/a = kp + 4λ± sin2(q/2) for Z̄s and Z̄a , respectively. As explained in Appendix

A, we find the determinant of the matrices Z̄s/a in the large N limit (see Eqs. A28, A29, and
A30). In this case, from the matrix elements of Z̄s and Z̄a along with Eqs. A16 and A29, we
get (λ± correspond to Z̄s and Z̄a , respectively):

2(a1b2 − a2b1) =
2γ 2

√
(kp + 4λ± sin2(q/2))(4k0 − kp − 4λ± sin2(q/2))

k40

×
(
γ 4 + k20λ2± − λ±γ 2(cos q)(2k0 − kp − 4λ± sin2(q/2))

)
sin q

λ3±
. (B72)

Here, the classical current can be expressed as in Eq. 32 in the linear response regime. We
use the expression for�N (see Eq. A28) in the large N limit to re-express the symmetric and
anti-symmetric parts of the current as

〈J clII 〉s/a = kB�T

π

∫ π

0
dq

gs/a1 (q)

(1 − gs/a2 (q)2)1/2
. (B73)

Now, we use the form of Eqs. A37 and B72 to simplify the integrand in the expression for
classical current (where we define �± = γ 4 + k20λ

2±) as:

gs/a1 (q)

(1 − gs/a2 (q)2)1/2
=

(sin2 q)γ 2λ2±
√
4k0 − kp − 4λ± sin2(q/2)

2
√
m0
(
�± − γ 2λ±(cos q)(2k0 − kp − 4λ± sin2(q/2))

) .
(B74)

The substitution x = cos q simplifies the symmetric and anti-symmetric parts of the classical
current:

〈J clII 〉s/a = kB�T

2π
√
m0

∫ 1

−1

dx γ 2λ2±
√
1 − x2

√
4k0 − kp − 2λ±(1 − x)

�± − γ 2λ±x(2k0 − kp − 2λ±(1 − x))
. (B75)

We may evaluate this integral in terms of elliptic integrals as in the previous case to obtain
(for 0 ≤ λ < 1)

〈J clII 〉s/a = kB�T

4π
√
m0
√
kp − 4k0 + 4λ±

[−2(kp + 4λ± − 4k0)(E(φs/a, ζ s/a) + E(ζ s/a))

+4(λ± − k0)(F(φs/a, ζ s/a) + K (ζ s/a))

+(kp + 2λ± − 2k0)
(
�(ξ

s/a
− , φs/a, ζ s/a) + �(ξ

s/a
+ , φs/a, ζ s/a)

+�(ξ
s/a
− , ζ s/a) + �(ξ

s/a
+ , ζ s/a)

)

+
γ 2
(
4k20 − 4k0(kp + 2λ±) + k2p + 4kpλ± − 4λ2±

)
+ 4k20λ

2± + 4γ 4

√
8γ 2k20λ

2± + γ 4(−2k0 + kp + 2λ±)2 + 8γ 6

×
(
�(ξ

s/a
− , φs/a, ζ s/a) − �(ξ

s/a
+ , φs/a, ζ s/a)

+�(ξ
s/a
− , ζ s/a) − �(ξ

s/a
+ , ζ s/a)

)]
. (B76)
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Here, λ± correspond to 〈J clII 〉s/a , respectively, and

φs/a = i sinh−1

(√
4k0 − kp − 4λ±

kp − 4k0

)
, ζ s/a = kp − 4k0

kp + 4λ± − 4k0
(B77)

and

ξ
s/a
± = 2γ 2(kp − 4k0)

γ 2(−6k0 + kp + 2λ±) ±
√
8γ 2k20λ

2± + γ 4(−2k0 + kp + 2λ±)2 + 8γ 6
.

(B78)

Thus, we have an analytical expression for classical current in the case of two different baths
at each boundary of the network.

B.3 Temperature Dependence of Low-Temperature 〈JII〉

Here, we analyse the temperature dependence of the quantum current 〈JII〉, obtained when
two different baths are coupled at each boundary of the system. From the above analysis, we
know that the symmetric part of the quantum current can be expressed as:

〈JII〉s = �
2�T

8πkBT 2√m0

∫ π

0
dq
[ γ 2λ2+ sin2(q)

√
4k0 − m0ω2

s

�+ − γ 2λ+(cos q)(2k0 − m0ω2
s )

ω2
s csch

2
(

�ωs

2kBT

)]
.

(B79)
Here, m0ω

2
s = kp + 4λ+ sin2(q/2). In the small q limit, this expression simplifies to:

〈JII〉s = �
2�T

8πkBT 2√m0

∫ π

0
dq
[ γ 2λ2+q2

√
4k0 − kp − λ+q2

�+ − γ 2λ+(1 − q2/2)(2k0 − kp − λ+q2)

×
(
kp
m0

+ λ+q2

m0

)
4e

− �ω0
kB T e

− λ+q2

2kB Tm0ω0

]
. (B80)

Following the similar arguments as in Appendix A, for kp �= 0, from Eq. B80 we get the
leading-order T -dependence as:

〈JII〉s ∼ e
−�ω0
kB T

√
T

with ω0 =
√

kp
m0

. (B81)

Now, to understand the temperature dependence of the current when kp = 0, we notice that
the denominator in the integrand in Eq. B79 for small q limit takes the form:

(γ 2 − k0λ+)2 + (k0λ+γ 2 + γ 2λ2+)q2. (B82)

Thus, analytically, we get 〈JII〉s ∼ T , when γ 2 = k0λ+ and 〈JII〉s ∼ T 3 when γ 2 �= k0λ+.
Similar results hold for anti-symmetric part of the quantum current 〈JII〉a . However, it is
only defined in the regular regime, where the anti-symmetric frequencies are real. Thus, for
kp = 0, the total quantum current 〈JII〉 ∼ T if either γ 2 = k0λ+ or γ 2 = k0λ−. On the
other hand, if γ 2 �= k0λ+ �= k0λ−, then 〈JII〉 ∼ T 3. We are able to reproduce these results
numerically.
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Appendix C Two Ohmic Baths at Each Boundary

In this appendix,we consider the casewhere two types of oscillators at each end of the network
are connected to two different Ohmic baths. The Ohmic baths are modeled by white noise,
implying that the noises are uncorrelated at different times, leading to Markovian dynamics.
Thus, in this case, the self energy of the baths are given by the expression �̃+

L/R(ω) = iγ o
L/Rω

(we assume both baths have the same coupling γ o(1)

L = γ o(2)

L = γ o
L ). Wewrite down the EOM

for the network variables as:

m0 ÿα,1 = −kp(yα,1) − k
[
(2yα,1 − yα,2) + λ(2yβ,1 − yβ,2)

]− γ o
L ẏα,1 + ηα,L ,

m0 ÿα,N = −kp(yα,N ) − k
[
(2yα,N − yα,N−1)

+ λ(2yβ,N − yβ,N−1)
]− γ o

R ẏα,N + ηα,R . (C83)

Here, α �= β and α, β = 1, 2, and ηα,L/R represent the noises. Next, we rewrite these
EOM in terms of symmetric and anti-symmetric variables (ys/a,n = (y1,n ± y2,n)/

√
2). The

symmetric variables at the boundaries satisfy the EOM:

m0 ÿs,1 = −kp(ys,1) − k
[
(2ys,1 − ys,2) + λ(2ys,1 − ys,2)

]− γ o
L ẏs,1 + ηs,L ,

m0 ÿs,N = −kp(ys,N ) − k
[
(2ys,N − ys,N−1)

+λ(2ys,N − ys,N−1)
]− γ o

R ẏs,N + ηs,R . (C84)

Similarly, the anti-symmetric variables at the boundaries satisfy the EOM:

m0 ÿa,1 = −kp(ya,1) − k
[
(2ya,1 − ya,2) − λ(2ya,1 − ya,2)

]− γ o
L ẏa,1 + ηa,L ,

m0 ÿa,N = −kp(ya,N ) − k
[
(2ya,N − ya,N−1)

−λ(2ya,N − ya,N−1)
]− γ o

R ẏa,N + ηa,R . (C85)

The remaining symmetric and anti-symmetric variables ys/a,n (for n = 2, · · · , N−1) satisfy
the EOM:

m0 ÿs/a,n = −kp ys/a,n − k
[ (
2ys/a,n − ys/a,n−1 − ys/a,n+1

)
±λ(2ys/a,n − ys/a,n+1 − ys/a,n−1)

]
. (C86)

In terms of the Fourier modes in frequency domain, the EOM for the boundary variables
become:

zL,+ ỹs,1(ω) − k(1 + λ)ỹs,2(ω) = η̃s,L ,

zR,+ ỹs,N (ω) − k(1 + λ)ỹs,N−1(ω) = η̃s,R,

zL,− ỹa,1(ω) − k(1 − λ)ỹa,2(ω) = η̃a,L ,

zR,− ỹa,N (ω) − k(1 − λ)ỹa,N−1(ω) = η̃a,R . (C87)

Here, zL/R,+ = (−m0ω
2+kp +2k(1+λ)− iγ o

L/Rω) and zL/R,− = (−m0ω
2+kp +2k(1−

λ) − iγ o
L/Rω).

C.1 Linear Response Heat Current

We define the heat current as the rate of work done by the left baths on the network, which
takes the form:

JWI I = − [ẏ1,1(−γ o
L ẏ1,1 + η1,L) + ẏ2,1(−γ o

L ẏ2,1 + η2,L)
]
. (C88)

In terms of symmetric and anti-symmetric variables, the current becomes

JWI I = −ηs,L ẏs,1 − ηa,L ẏa,1 + γ o
L (ẏ2s,1 + ẏ2a,1). (C89)
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Now going to the Fourier modes in frequency domain, we express the noise averaged heat
current as:

〈JwII 〉 =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′)t

〈
iω ỹs,1(ω)η̃s,L(ω′) + γ o

L iω iω′ ỹs,1(ω)ỹs,1(ω
′)

+iω ỹa,1(ω)η̃a,L(ω′) + γ o
L iω iω′ ỹa,1(ω)ỹa,1(ω

′))
〉
. (C90)

From the EOM in Eq. C87, we notice that

ỹs/a,1 = [G̃s/a]1,1
(

η̃1,L ± η̃2,L√
2

)
+ [G̃s/a]1,N

(
η̃1,R ± η̃2,R√

2

)
,

ỹs/a,N = [G̃s/a]N ,1

(
η̃1,L ± η̃2,L√

2

)
+ [G̃s/a]N ,N

(
η̃1,R ± η̃2,R√

2

)
. (C91)

Here, G̃s/a are the inverses of the matrices Zs,a defined as:

Zs/a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zL,± −λ± 0 · · · 0

−λ± z± −λ±
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... −λ± z± −λ±
0 · · · · · · −λ± zR,±

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C92)

where, zb,± = −m0ω
2+kp+2λ±−iγ o

b ω and z± = −m0ω
2+kp+2λ±. Recallλ± = k(1±λ)

and they correspond to Zs and Za , respectively. The noise average can be computed using
the fluctuation-dissipation relation for the Ohmic baths:

〈η̃a,b(ω)η̃a′,b′(ω′)〉 = γ o
b �ω

π
(1 + fb)δb,b′δa,a′δ(ω + ω′). (C93)

Here, a, a′ = 1, 2 and b = L, R. As explained in previous appendices, finding the left and
right parts of the current and combining them, we derive the expression for total current:

〈JwII 〉 =
∫ ∞

−∞
dω
[
(|[G̃s(ω)]1,N |2 + |[G̃a(ω)]1,N |2)

×γ o
Lγ o

R
�ω3

π
( fL − fR)

]
= 〈JwII 〉s + 〈JwII 〉a . (C94)

In the linear response regime, this heat current takes the form:

〈JwII 〉 = kB�T

π

∫ ∞

−∞
dω
[
(|[G̃s(ω)]1,N |2 + |[G̃a(ω)]1,N |2)

×γ o
Lγ o

Rω2
(

�ω

2kBT

)2

csch2
(

�ω

2kBT

)]
. (C95)

Next, we find an analytical expression for the current in the thermodynamic limit for large
temperature.
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C.2 Thermodynamic Limit and Analytical Expression for Classical Heat Current

As explained in previous appendices, to find the analytical expression for classical current,
we need to manipulate large N properties of the matrix Zs/a = λ± Z̃ s/a . Given N number of
lattice sites in the network, Z̃ s/a are N × N tridiagonal matrices whose offdiagonal elements
are −1 and diagonal elements excluding the first and last one are (−m0ω

2 + kp)/λ+,−)+ 2,
respectively. The first and last diagonal elements of Z̃ s are zL,+/λ+ and zR,+/λ+, respec-
tively, and those for Z̃ a are zL,−/λ− and zR,−/λ−, respectively. The expression for heat
current in Eq. C94 involves matrix elements [G̃s/a]1,N , which is given by the inverse of
Zs/a : G̃s/a = (Zs/a)−1 = (Z̃ s/a)−1/λ±. Here, λ± appear in the expressions for G̃s and G̃a ,
respectively. Thus, we have

|G̃s/a
1,N | = 1

λ±| det Z̃ s/a | . (C96)

We simplify the determinant of the tridiagonal matrices Z̃ s/a in the large N limit to get an
analytical expression. Choosing γ o

L = γ o
R = γ o, we find the expression for classical current

as

〈Jwcl

II 〉 = kB�T

π

∫ ∞

−∞
dω(γ o)2ω2(|G̃s

1N |2 + |G̃a
1N |2) = 〈Jwcl

II 〉s + 〈Jwcl

II 〉a . (C97)

To followa similar derivation as done inAppendixB,wedefine ã± = ((−m0ω
2+kp)/λ±)+2

and εL,R = iωγ o
L/R/λ± for Z̃s and Z̃a , respectively. Nowwith the substitution ã± = 2 cos q ,

in the large N limit (see Eq. A35), we re-express the symmetric and anti-symmetric parts of
the classical current in the form:

〈Jwcl

II 〉s/a = kB�T

π

∫ π

0
dq

gs/a1 (q)

(1 − gs/a2 (q)2)1/2
, (C98)

where, the integrand is given explicitly as:

gs/a1 (q)

(1 − gs/a2 (q)2)1/2
= γ oλ2±

m0

sin2(q)

�s/a − ζs/a cos(q)
. (C99)

Here,

�s/a = λ2± + (kp + 2λ±)(γ o)2

m0
and ζs/a = 2λ±(γ o)2

m0
. (C100)

Thus, the expression for the classical current is

〈Jwcl

II 〉 = 〈(JwII )cl〉s + 〈(JwII )cl〉a

= γ okB�T

m0

(λ2+
ζ 2
s

(�s −
√

�2
s − ζ 2

s ) + λ2−
ζ 2
a

(�a −
√

�2
a − ζ 2

a )
)
. (C101)

C.3 Temperature Dependence of Low-Temperature 〈JwII 〉

Now, we analyse the temperature dependence of the low-temperature quantum heat current in
Eq. C94. In order to understand the role of pinning strength on the temperature dependence,
we analyse two different cases, one with kp �= 0 and the other with kp = 0.
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We notice that for N → ∞, in the linear response regime, the symmetric part of the
quantum current is

〈JwII 〉s = γ oλ2+�
2�T

4πm0kBT 2

∫ π

0

dq sin2 q ω2

�s − ζs cos q
csch2

(
�ω

2kBT

)
. (C102)

Here,ω2 = (kp+4λ+ sin2(q/2))/m0. As explained in the previous appendices, by taking the
small q limit to understand the temperature dependence of the quantum current for kp �= 0,
we find

〈JwII 〉s ≈ γ oλ2+�
2�T

4πm0kBT 2

∫ π

0

[ dq q2

�s − ζs(1 − q2/2)

(
kp
m0

+ λ+q2

m0

)
4e

− �ω0
kB T e

− �λ+q2

2kB Tm0ω0

]
,

(C103)
where ω0 = √

kp/m0. By substituting x = (�λ+q2)/(2m0ω0kBT ), we obtain the leading-

order T -dependence: 〈JwII 〉s ∼ (e−�ω0/(kBT ))/
√
T .

For kp = 0, we have �s = λ2+ + ζs and ω2 ≈ λ+q2/m0 in the small q limit. Thus, we
find

〈JwII 〉s ≈ γ oλ2+�
2�T

4πm0kBT 2

∫ π

0
dq
[ q2

λ2+ + ζs(q2/2)
× λ+q2

m0
csch2

(
�ω

2kBT

)]
. (C104)

By substituting x = �ω/(2kBT ), and noticing that ω ∝ q , we get the leading order T -
dependence 〈JwII 〉s ∼ T 3. These observations agree with the results already known from the
heat transport of ordered harmonic lattices [38]. Similar temperature dependence holds for
the anti-symmetric part of the current 〈JwII 〉a as well. However, this current is bounded only
in the regular regime.

C.4 Comparison of Classical Heat Current for Rubin Bath and Ohmic Bath

We compare the classical heat currents obtained for heat baths with different spectral
properties. To compare the analytical expressions for classical currents obtained through

Fig. 6 Comparison between the classical heat currents 〈JclII 〉 and 〈Jwcl

II 〉 as a function of the bath spring
constant k0. The y-axis represents the heat currents multiplied by the common factor π/(kB�T ). We set the
parameters λ = 0.7, γ = 0.5k, kp = 0 and m0 = k = � = kB = 1 in the numerical analysis
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Rubin baths to that of Ohmic baths, we notice that the coupling strengths γ and γ o should
satisfy the condition:

γ o =
√
m0γ

2

k3/20

. (C105)

This identity is obtained by comparing the self energies �̃+(ω) of both types of baths at
small frequencies. We notice that the values of current become almost equal as we increase
the value of k0 as shown in Fig. 6. This behavior is expected, as Rubin baths with higher
bandwidths exhibit properties resembling Ohmic baths (See [51] for a detailed analysis).

Appendix D Single Ohmic Bath at Each Boundary

In this appendix, we consider the case where two types of oscillators at each end of the
network are connected to a single Ohmic bath. We write down the EOM for the network
variables as:

m0 ÿα,1 = −kp yα,1 − k
[
2yα,1 − yα,2 + λ(2yβ,1 − yβ,2)

]− γ o
L (ẏα,1 + ẏβ,1) + ηL ,

m0 ÿα,N = −kp yα,N − k
[
2yα,N − yα,N−1 + λ(2yβ,N − yβ,N−1)

]
− γ o

R(ẏα,N + ẏβ,N ) + ηR . (D106)

Here, α �= β and α, β = 1, 2, and ηL/R represent the noises of the left and right baths. We
rewrite these EOM in terms of symmetric and anti-symmetric variables (ys/a,n = (y1,n ±
y2,n)/

√
2). The symmetric variables at the boundaries satisfy the EOM:

m0 ÿs,1 = −kp ys,1 − k
[
2ys,1 − ys,2 + λ(2ys,1 − ys,2)

]− 2γ o
L ẏs,1 + √

2ηL ,

m0 ÿs,N = −kp ys,N − k
[
2ys,N − ys,N−1 + λ(2ys,N − ys,N−1)

]
− 2γ o

R ẏs,N + √
2ηR . (D107)

However, the anti-symmetric variables at the boundaries decouple from the dissipation terms
(proportional to γ o

L and γ o
R) as well as the noise terms (ηL and ηR), and satisfy the EOM:

m0 ÿa,1 = −kp ya,1 − k
[
2ya,1 − ya,2 − λ(2ya,1 − ya,2)

]
,

m0 ÿa,N = −kp ya,N − k
[
2ya,N − ya,N−1 − λ(2ya,N − ya,N−1)

]
. (D108)

The remaining symmetric and anti-symmetric variables ys/a,n (for n = 2, . . . , N −1) satisfy
the EOM:

m0 ÿs/a,n = −kp ys/a,n − k
[
2ys/a,n − ys/a,n−1 − ys/a,n+1

±λ(2ys/a,n − ys/a,n+1 − ys/a,n−1)
]
. (D109)

Thus, we observe that the anti-symmetric modes get entirely decoupled from the bath vari-
ables for this type of coupling between the baths and the oscillator network. This implies that
the transport depends only on the symmetric modes, allowing for a steady state even beyond
the stable regime.

D.1 Linear Response Heat Current

We define the heat current as the rate of work done by the left bath on the network, which
takes the form:

JwI = − [ẏ1,1(−γ o
L (ẏ1,1 + ẏ2,1) + ηL) + ẏ2,1(−γ o

L (ẏ2,1 + ẏ1,1) + ηL)
]
. (D110)
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In terms of symmetric and anti-symmetric variables, the current becomes

JwI = −
[√

2 ẏs,1(−
√
2γ o

L ẏs,1 + ηL)
]
. (D111)

Thus, we can see that the current is independent of the anti-symmetric modes and it remains
bounded even in the unstable regime of the coupling.

As explained in the previous appendices, we can find the analytical expression for classical
heat current and temperature-dependence of the quantumcurrent in this case too. For instance,
going to the Fourier modes we can express the current as

〈JwI 〉 =
∫ ∞

−∞
dω

[
4|[G+

s (ω)]1,N |2γ o
Lγ o

Rω2 �ω

π
( fL − fR)

]
. (D112)

Here, G+
s is the inverse of the tri-diagonal matrix Z :

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zL+ −λ+ 0 · · · 0

−λ+ z+ −λ+
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... −λ+ z+ −λ+
0 · · · · · · −λ+ zR+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (D113)

Here, zb+ = −m0ω
2 + kp + 2λ+ − i2γ o

b ω, z+ = −m0ω
2 + kp + 2λ+, and λ+ = k(1+ λ)

for b = L, R. Thus, we obtain the analytical expression for the classical current as

〈Jwcl

I 〉 = 2γ okB�T

m0

(λ2+
ζ 2 (� −

√
�2 − ζ 2)

)
, (D114)

where � = λ2+ + (kp + 2λ+/m2)4γ 2 and ζ = 8λ+γ 2/m assuming γ o
L = γ o

R = γ .

Acknowledgements We would like to thank A. Clerk and K. Roychowdhury for the insightful discussions.

Data Availability The authors declare that the data supporting the findings of this study are available within
the paper.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant for the content of this
article.

References

1. Hatano, N., Nelson, D.R.: Localization transitions in non-Hermitian quantummechanics. Phys. Rev. Lett.
77(3), 570–573 (1996). https://doi.org/10.1103/PhysRevLett.77.570

2. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys.
Rev. Lett. 80, 5243–5246 (1998). https://doi.org/10.1103/PhysRevLett.80.5243

3. Khare, A., Mandal, B.P.: A PT-invariant potential with complex QES eigenvalues. Phys. Lett. A 272(1),
53–56 (2000). https://doi.org/10.1016/S0375-9601(00)00409-6

4. Bagchi, B., Cannata, F., Quesne, C.: PT-symmetric sextic potentials. Phys. Lett. A 269(2), 79–82 (2000).
https://doi.org/10.1016/S0375-9601(00)00227-9

123

https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1016/S0375-9601(00)00409-6
https://doi.org/10.1016/S0375-9601(00)00227-9


  123 Page 32 of 33 T. R. Vishnu et al.

5. Mostafazadeh, A.: Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of
the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43(1), 205–214 (2002). https://doi.org/10.
1063/1.1418246

6. Bender, C.M., Berry, M.V., Mandilara, A.: Generalized PT symmetry and real spectra. J. Phys. A 35(31),
467 (2002). https://doi.org/10.1088/0305-4470/35/31/101

7. Berry, M.V.: Physics of non-Hermitian degeneracies. Czechoslov. J. Phys. 54(10), 1039–1047 (2004).
https://doi.org/10.1023/B:CJOP.0000044002.05657.04

8. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A.,
Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev.
Lett. 103, 093902 (2009). https://doi.org/10.1103/PhysRevLett.103.093902

9. Heiss, W.D.: The physics of exceptional points. J. Phys. A 45(44), 444016 (2012). https://doi.org/10.
1088/1751-8113/45/44/444016

10. Rudner, M.S., Levitov, L.S.: Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett.
102(6), 065703 (2009). https://doi.org/10.1103/PhysRevLett.102.065703

11. Liang, S.-D., Huang, G.-Y.: Topological invariance and global Berry phase in non-Hermitian systems.
Phys. Rev. A 87(1), 012118 (2013). https://doi.org/10.1103/PhysRevA.87.012118

12. Shen, H., Zhen, B., Fu, L.: Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett.
120(14), 146402 (2018). https://doi.org/10.1103/PhysRevLett.120.146402

13. Lieu, S.: Topological phases in the non-Hermitian Su–Schrieffer–Heeger model. Phys. Rev. B 97(4),
045106 (2018). https://doi.org/10.1103/PhysRevB.97.045106

14. Pan, M., Zhao, H., Miao, P., Longhi, S., Feng, L.: Photonic zero mode in a non-Hermitian photonic lattice.
Nat. Commun. 9(1), 1308 (2018). https://doi.org/10.1038/s41467-018-03822-8

15. Kawabata, K., Shiozaki, K., Ueda, M., Sato, M.: Symmetry and topology in non-Hermitian physics. Phys.
Rev. X 9(4), 041015 (2019). https://doi.org/10.1103/PhysRevX.9.041015

16. Wang, K., Dutt, A., Wojcik, C.C., Fan, S.: Topological complex-energy braiding of non-Hermitian bands.
Nature 598(7879), 59–64 (2021). https://doi.org/10.1038/s41586-021-03848-x

17. Vyas, V.M., Roy, D.: Topological aspects of periodically driven non-Hermitian Su–Schrieffer–Heeger
model. Phys. Rev. B 103(7), 075441 (2021). https://doi.org/10.1103/PhysRevB.103.075441

18. Nehra, R., Roy, D.: Topology of multipartite non-Hermitian one-dimensional systems. Phys. Rev. B 105,
195407 (2022). https://doi.org/10.1103/PhysRevB.105.195407

19. Colpa, J.H.P.: Diagonalization of the quadratic boson Hamiltonian. Physica A 93(3), 327–353 (1978).
https://doi.org/10.1016/0378-4371(78)90160-7

20. Rossignoli, R., Kowalski, A.M.: Complex modes in unstable quadratic bosonic forms. Phys. Rev. A 72,
032101 (2005). https://doi.org/10.1103/PhysRevA.72.032101

21. McDonald, A., Pereg-Barnea, T., Clerk, A.A.: Phase-dependent chiral transport and effective non-
Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018). https://doi.org/
10.1103/PhysRevX.8.041031

22. Lieu, S.: Topological symmetry classes for non-Hermitian models and connections to the bosonic
Bogoliubov-de Gennes equation. Phys. Rev. B 98, 115135 (2018). https://doi.org/10.1103/PhysRevB.
98.115135

23. Wang, Y.-X., Clerk, A.A.: Non-Hermitian dynamics without dissipation in quantum systems. Phys. Rev.
A 99, 063834 (2019). https://doi.org/10.1103/PhysRevA.99.063834

24. Flynn, V.P., Cobanera, E., Viola, L.: Deconstructing effective non-Hermitian dynamics in quadratic
bosonic Hamiltonians. New J. Phys. 22(8), 083004 (2020). https://doi.org/10.1088/1367-2630/ab9e87

25. Flynn, V.P., Cobanera, E., Viola, L.: Topology by dissipation: majorana bosons in metastable quadratic
Markovian dynamics. Phys. Rev. Lett. 127, 245701 (2021). https://doi.org/10.1103/PhysRevLett.127.
245701

26. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading
(1995)

27. Schwartz,M.D.: QuantumField Theory and the StandardModel. CambridgeUniversity Press, Cambridge
(2014)

28. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev.Mod. Phys. 86, 1391–1452
(2014). https://doi.org/10.1103/RevModPhys.86.1391

29. Barton, G.: Quantum mechanics of the inverted oscillator potential. Ann. Phys. 166(2), 322–363 (1986).
https://doi.org/10.1016/0003-4916(86)90142-9

30. Subramanyan, V., Hegde, S.S., Vishveshwara, S., Bradlyn, B.: Physics of the inverted harmonic oscillator:
From the lowest Landau level to event horizons. Ann. Phys. 435, 168470 (2021). https://doi.org/10.1016/
j.aop.2021.168470

31. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1),
1 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

123

https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevA.87.012118
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1038/s41467-018-03822-8
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1038/s41586-021-03848-x
https://doi.org/10.1103/PhysRevB.103.075441
https://doi.org/10.1103/PhysRevB.105.195407
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1103/PhysRevA.72.032101
https://doi.org/10.1103/PhysRevX.8.041031
https://doi.org/10.1103/PhysRevX.8.041031
https://doi.org/10.1103/PhysRevB.98.115135
https://doi.org/10.1103/PhysRevB.98.115135
https://doi.org/10.1103/PhysRevA.99.063834
https://doi.org/10.1088/1367-2630/ab9e87
https://doi.org/10.1103/PhysRevLett.127.245701
https://doi.org/10.1103/PhysRevLett.127.245701
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1016/0003-4916(86)90142-9
https://doi.org/10.1016/j.aop.2021.168470
https://doi.org/10.1016/j.aop.2021.168470
https://doi.org/10.1016/S0370-1573(02)00558-6


Heat Transport Through an Open Coupled… Page 33 of 33   123 

32. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008). https://doi.org/
10.1080/00018730802538522

33. Xu, G., Zhou, X., Li, Y., Cao, Q., Chen, W., Xiao, Y., Yang, L., Qiu, C.-W.: Non-Hermitian chiral heat
transport. Phys. Rev. Lett. 130, 266303 (2023). https://doi.org/10.1103/PhysRevLett.130.266303

34. Dhar, A., Roy, D.: Heat transport in harmonic lattices. J. Stat. Phys. 125(4), 801–820 (2006). https://doi.
org/10.1007/s10955-006-9235-3

35. Ali, T., Bhattacharyya, A., Haque, S.S., Kim, E.H., Moynihan, N., Murugan, J.: Chaos and complexity in
quantum mechanics. Phys. Rev. D 101, 026021 (2020). https://doi.org/10.1103/PhysRevD.101.026021

36. Bhattacharyya, A., Chemissany, W., Haque, S.S., Murugan, J., Yan, B.: The multi-faceted inverted har-
monic oscillator: chaos and complexity. SciPost Phys. Core 4, 002 (2021). https://doi.org/10.21468/
SciPostPhysCore.4.1.002

37. Qu, L.-C., Chen, J., Liu, Y.-X.: Chaos and complexity for inverted harmonic oscillators. Phys. Rev. D
105, 126015 (2022). https://doi.org/10.1103/PhysRevD.105.126015

38. Roy, D., Dhar, A.: Heat transport in ordered harmonic lattices. J. Stat. Phys. 131(3), 535–541 (2008).
https://doi.org/10.1007/s10955-008-9487-1

39. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882–5885
(2001). https://doi.org/10.1103/PhysRevLett.86.5882

40. Roy, D., Dhar, A.: Role of pinning potentials in heat transport through disordered harmonic chains. Phys.
Rev. E 78, 051112 (2008). https://doi.org/10.1103/PhysRevE.78.051112

41. Chaudhuri, A., Kundu, A., Roy, D., Dhar, A., Lebowitz, J.L., Spohn, H.: Heat transport and phonon
localization in mass-disordered harmonic crystals. Phys. Rev. B 81, 064301 (2010). https://doi.org/10.
1103/PhysRevB.81.064301

42. Rubin, R.J., Greer, W.L.: Abnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopi-
cally disordered crystal. J. Math. Phys. 12(8), 1686–1701 (1971). https://doi.org/10.1063/1.1665793

43. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12(8),
1701–1711 (1971). https://doi.org/10.1063/1.1665794

44. Hu, G.Y., O’Connell, R.F.: Analytical inversion of symmetric tridiagonal matrices. J. Phys. A 29(7), 1511
(1996). https://doi.org/10.1088/0305-4470/29/7/020

45. Liu, X., Gupta, S.D., Agarwal, G.S.: Regularization of the spectral singularity inmathcal PT -symmetric
systems by all-order nonlinearities: Nonreciprocity and optical isolation. Phys. Rev. A 89, 013824 (2014).
https://doi.org/10.1103/PhysRevA.89.013824

46. Roy, D.: Crossover from fermi-pasta-ulam to normal diffusive behavior in heat conduction through open
anharmonic lattices. Phys. Rev. E 86, 041102 (2012). https://doi.org/10.1103/PhysRevE.86.041102

47. Bondyopadhaya, N., Roy, D.: Nonequilibrium electrical, thermal and spin transport in open quantum
systems of topological superconductors, semiconductors and metals. J. Stat. Phys. 187, 11 (2022). https://
doi.org/10.1007/s10955-022-02902-w

48. Jonsson, R.H., Hackl, L., Roychowdhury, K.: Entanglement dualities in supersymmetry. Phys. Rev. Res.
3, 023213 (2021). https://doi.org/10.1103/PhysRevResearch.3.023213

49. Zhang, X.-L., Wang, S., Hou, B., Chan, C.T.: Dynamically encircling exceptional points: in situ control
of encircling loops and the role of the starting point. Phys. Rev. X 8, 021066 (2018). https://doi.org/10.
1103/PhysRevX.8.021066

50. Nehra, R., Roy, D.: Anomalous dynamical response of non-Hermitian topological phases. Phys. Rev. B
109, 094311 (2024). https://doi.org/10.1103/PhysRevB.109.094311

51. Das, A., Dhar, A., Santra, I., Satpathi, U., Sinha, S.: Quantum Brownian motion: Drude and ohmic baths
as continuum limits of the Rubin model. Phys. Rev. E 102, 062130 (2020). https://doi.org/10.1103/
PhysRevE.102.062130

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1103/PhysRevLett.130.266303
https://doi.org/10.1007/s10955-006-9235-3
https://doi.org/10.1007/s10955-006-9235-3
https://doi.org/10.1103/PhysRevD.101.026021
https://doi.org/10.21468/SciPostPhysCore.4.1.002
https://doi.org/10.21468/SciPostPhysCore.4.1.002
https://doi.org/10.1103/PhysRevD.105.126015
https://doi.org/10.1007/s10955-008-9487-1
https://doi.org/10.1103/PhysRevLett.86.5882
https://doi.org/10.1103/PhysRevE.78.051112
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1103/PhysRevB.81.064301
https://doi.org/10.1063/1.1665793
https://doi.org/10.1063/1.1665794
https://doi.org/10.1088/0305-4470/29/7/020
https://doi.org/10.1103/PhysRevA.89.013824
https://doi.org/10.1103/PhysRevE.86.041102
https://doi.org/10.1007/s10955-022-02902-w
https://doi.org/10.1007/s10955-022-02902-w
https://doi.org/10.1103/PhysRevResearch.3.023213
https://doi.org/10.1103/PhysRevX.8.021066
https://doi.org/10.1103/PhysRevX.8.021066
https://doi.org/10.1103/PhysRevB.109.094311
https://doi.org/10.1103/PhysRevE.102.062130
https://doi.org/10.1103/PhysRevE.102.062130

	Heat Transport Through an Open Coupled Scalar Field Theory Hosting Stability-to-Instability Transition
	Abstract
	1 Introduction
	2 Dynamical Matrix and Stability-to-Instability Transition
	3 Coupled Scalar Field Theory on Lattice: Two-Component Harmonic Chain
	4 Heat Conduction
	5 Single Bath at Each Boundary
	6 Two Baths at Each Boundary
	7 Summary and Outlook
	A Single Rubin Bath at Each Boundary
	A.1 Linear response heat current
	A.2 Thermodynamic Limit and an Analytic Expression for Classical Heat Current
	A.3 General Case: Analytical Expression for Classical Current
	A.4 Temperature Dependence of Low-Temperature langleJIrangle

	B Two Rubin Baths at Each Boundary
	B.1 Linear Response Heat Current
	B.2 Thermodynamic Limit and an Analytic Expression for the classical Current
	B.3 Temperature Dependence of Low-Temperature langleJIIrangle

	C Two Ohmic Baths at Each Boundary
	C.1 Linear Response Heat Current
	C.2 Thermodynamic Limit and Analytical Expression for Classical Heat Current
	C.3 Temperature Dependence of Low-Temperature langleJIIw rangle
	C.4 Comparison of Classical Heat Current for Rubin Bath and Ohmic Bath

	D Single Ohmic Bath at Each Boundary
	D.1 Linear Response Heat Current

	Acknowledgements
	References


