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Abstract

The precise characterization and mitigation of systematic effects is one of the biggest roadblocks impeding the
detection of the fluctuations of cosmological 21 cm signals. Missing data in radio cosmological experiments, often
due to radio frequency interference (RFI), pose a particular challenge to power spectrum analysis as this could lead
to the ringing of bright foreground modes in the Fourier space, heavily contaminating the cosmological signals.
Here we show that the problem of missing data becomes even more arduous in the presence of systematic effects.
Using a realistic numerical simulation, we demonstrate that partially flagged data combined with systematic effects
can introduce significant foreground ringing. We show that such an effect can be mitigated through inpainting the
missing data. We present a rigorous statistical framework that incorporates the process of inpainting missing data
into a quadratic estimator of the 21 cm power spectrum. Under this framework, the uncertainties associated with
our inpainting method and its impact on power spectrum statistics can be understood. These results are applied to
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the latest Phase II observations taken by the Hydrogen Epoch of Reionization Array, forming a crucial component
in power spectrum analyses as we move toward detecting 21 cm signals in the ever more noisy RFI environment.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Radio interferometry (1346); H I line
emission (690)

1. Introduction

The redshifted 21 cm signal from neutral hydrogen contains
rich astrophysical and cosmological information across cosmic
time (for a review, see S. R. Furlanetto et al. 2006; J. R. Pritc-
hard & A. Loeb 2012). Observations of such a signal will open
up large volumes of the unexplored Universe, allowing us to
constrain initial conditions of star and galaxy formation and to
better understand the dark sector of our Universe (T.-C. Chang
et al. 2008; M. F. Morales & J. S. B. Wyithe 2010; P. Bull et al.
2015; A. Mesinger 2016). In particular, radio interferometers
have been built or proposed to detect the spatial fluctuation of
the 21 cm signal to probe large-scale structures, the epoch of
reionization (EoR), and the cosmic dawn. The high spectral
resolution that can be achieved in radio astronomy makes these
experiments especially advantageous for probing small-scale
fluctuations along the line of sight. Examples of these
experiments include the Donald C. Baker Precision Array for
Probing the EoR (PAPER; A. R. Parsons et al. 2010), the LOw
Frequency Array (LOFAR; M.P. van Haarlem et al. 2013), the
New extension in Nançay upgrading LOFAR (NenuFAR;
P. Zarka et al. 2012), the Murchison Widefield Array (MWA;
S. J. Tingay et al. 2013; R. B. Wayth et al. 2018), the
(upgraded) Giant Metrewave Radio Telescope (GMRT;
G. Paciga et al. 2013; Y. Gupta et al. 2017), the MeerKAT
telescope (M. Santos et al. 2016), the Canadian Hydrogen
Intensity Mapping Experiment (CHIME; CHIME Collabora-
tion et al. 2022), the Hydrogen Epoch of Reionization Array
(HERA; D. R. DeBoer et al. 2017; L. M. Berkhout et al. 2024),
the Canadian Hydrogen Observatory and Radio-transient
Detector (CHORD; K. Vanderlinde et al. 2019), the Owens
Valley Long Wavelength Array (OVRO-LWA; M. W. Eastw-
ood et al. 2019), the Hydrogen Intensity and Real-time
Analysis eXperiment (HIRAX; D. Crichton et al. 2022), and
the Square Kilometre Array (SKA; M. Santos et al. 2015;
L. Koopmans et al. 2015). While none of these experiments
have reported a direct detection of the 21 cm power spectrum
on its own beyond redshift z ~ 1 so far (S. Paul et al. 2023),
many efforts have been put in to derive sensitive upper limits
on the 21 cm power spectrum at various redshifts (A. Ghosh
et al. 2011; G. Paciga et al. 2013; J. S. Dillon et al. 2014, 2015;
A. R. Parsons et al. 2014; A. P. Beardsley et al. 2016;
A. Ewall-Wice et al. 2016; A. Patil et al. 2017; N. Barry et al.
2019; M. W. Eastwood et al. 2019; B. K. Gehlot et al. 2019;
M. Kolopanis et al. 2019; W. Li et al. 2019; F. G. Mertens et al.
2020; C. M. Trott et al. 2020; A. Chakraborty et al. 2021;
H. Garsden et al. 2021; S. Yoshiura et al. 2021; Z. Abdurash-
idova et al. 2022; HERA Collaboration et al. 2023;
M. J. Wilensky et al. 2023; S. Munshi et al. 2024).

The main challenge to the successful measurement of the
21 cm power spectrum lies in mitigating the bright foreground
emission. Radio emission from astrophysical foregrounds can
be many orders of magnitude brighter than the cosmological
signals. Ideally, the spectral smoothness of the foreground
emission could allow one to localize the foreground signature
in the Fourier space (known as the foreground wedge; A. Datta
et al. 2010; A. R. Parsons et al. 2012; C. M. Trott et al. 2012;

H. Vedantham et al. 2012; M. F. Morales et al. 2012;
B. J. Hazelton et al. 2013; N. Thyagarajan et al. 2013; A. Liu
et al. 2014), making it possible to either model and subtract the
foreground, or filter and avoid the foreground (see A. Liu &
J. R. Shaw 2020, for a review). Unfortunately, the lack of a
perfect characterization of one's instrument could hinder these
foreground mitigation strategies as any unknown spectral
variations could lead to a leakage of bright foreground modes
out of their intrinsically localized region. Examples of these
instrumental systematic effects include calibration errors
(N. Barry et al. 2016; A. H. Patil et al. 2016; A. Ewall-Wice
et al. 2017; R. Byrne et al. 2019; A. Mouri Sardarabadi &
L. V. E. Koopmans 2019; J. S. Dillon et al. 2020), incomplete
or incorrect knowledge of the antenna response (A. R. Neben
et al. 2016a; T. Ansah-Narh et al. 2018; R. C. Joseph et al.
2018; N. Orosz et al. 2019; R. C. Joseph et al. 2020;
S. Choudhuri et al. 2021; H. Kim et al. 2022), or internal cable
reflections, signal chain crosstalk, and mutual coupling of
antennas (A. Ewall-Wice et al. 2016; N. S. Kern et al. 2019;
D. C. X. Ung et al. 2020; A.T. Josaitis et al. 2022; E. Rath et al.
2024).
In addition to systematic effects arising from the instru-

mental signal processing chain, a growing concern for
cosmological experiments in the radio band is the increasing
amount of radio frequency interference (RFI). RFI from
terrestrial and satellite communications can be observed even
by telescopes located in extremely radio-quiet sites (J. Bowman
& A. E. E. Rogers 2010; A. R. Offringa et al. 2013;
A. R. Offringa et al. 2015; M. Sokolowski et al. 2016;
I. Sihlangu et al. 2020; L. Lourenço et al. 2024). The impact of
RFI on the 21 cm power spectrum is twofold: while most RFI is
bright and can be easily identified and masked in the data (e.g.,
A. R. Offringa et al. 2012; M. J. Wilensky et al. 2019), residual
faint RFI can still introduce power comparable to the
cosmological signal across a wide range of Fourier modes
(M. J. Wilensky et al. 2023); second, even if all the RFI is
perfectly flagged, the gaps in data created by flagged channels
are particularly problematic for power spectrum analyses as
these discontinuities along the frequency axis may give rise to
ringing of bright foreground modes in the Fourier space. Owing
in part to the continuously deploying satellite constellations
(D. Grigg et al. 2023; F. Di Vruno et al. 2023), the ever more
noisy RFI environment makes mitigating the impacts of RFI an
imminent task in 21 cm cosmology.
Here, we focus on dealing with gaps in the data created by

flagging RFI. A conservative approach to deal with this
problem is by multiplying the data with a taper function that
goes to zero near the gaps (M. Kolopanis et al. 2019) or even to
directly exclude an entire integration time that is affected by
RFI (M. J. Wilensky et al. 2023). However, these methods will
significantly limit the accessible frequency bandwidth the
experiments could probe. Moreover, tapers that are dictated by
the RFI gap instead of the intrinsic properties of the instrument
will, in general, be suboptimal and result in reduced sensitivity.
Another common strategy to reduce the impact of gaps created
by RFI is to average the data across different observations that

2

The Astrophysical Journal, 979:191 (19pp), 2025 February 1 Chen et al.

http://astrothesaurus.org/uat/1146
http://astrothesaurus.org/uat/1346
http://astrothesaurus.org/uat/690
http://astrothesaurus.org/uat/690


trace the same cosmological mode. This could be averaging
across different baselines through redundant baseline averaging
or uv-plane gridding, averaging observations of the same patch
of the sky from different times (Z. Abdurashidova et al. 2022),
or averaging data with the same frequency separation (S. Bha-
radwaj et al. 2019; S. Pal et al. 2021; K. M. A. Elahi et al.
2024). This way, only channels with RFI flags that are
persistent along certain axes require further treatment. In this
work, however, we use a realistic simulation to show that in the
presence of varying systematic effects, single-baseline delay
power spectra with only partially flagged data still exhibit
foreground ringing that can be seen at current state-of-the-art
sensitivity levels. This is similar to what has been identified in
A. R. Offringa et al. (2019) and M. J. Wilensky et al. (2022) in
the context of a gridded power spectrum estimator.

Numerous other techniques have been proposed to deal
with RFI gaps by extracting information from the unflagged
data. A. R. Parsons & D. C. Backer (2009) adapted the
CLEAN algorithm to operate in the spectral dimension
(J.A. Högbom 1974; D. H. Roberts et al. 1987), proposing an
iterative deconvolution method to mitigate incomplete fre-
quency sampling. The deconvolution-based method was
applied to the PAPER and HERA analyses (A. R. Parsons
et al. 2014; Z. Abdurashidova et al. 2022; HERA Collaboration
et al. 2023). Another camp of methods is to fit the unflagged
data with a certain set of basis functions to directly perform the
transformation to the Fourier space or to inpaint the missing
frequency channels. These methods have a long history in
cosmic microwave background analyses to handle missing sky
coverage (A. de Oliveira-Costa & M. Tegmark 2006; P. Abrial
et al. 2008; S. M. Feeney et al. 2011; J. L. Starck et al. 2013;
H. F. Gruetjen et al. 2017). For instance, G. Paciga et al. (2013)
adopted a Hermite basis to perform the line-of-sight transfor-
mation; C. M. Trott et al. (2016) performed a least-square
spectral analysis (LSSA; P. Vaníček 1969, 1971) to fit for
Fourier coefficients in MWA data; A. Patil et al. (2017),
B. K. Gehlot et al. (2019), and F. G. Mertens et al. (2020) also
partly utilized the LSSA method for the LOFAR data, while
N. Barry et al. (2019) adopted the similar Lomb–Scargle
method (N. R. Lomb 1976; J. D. Scargle 1982) for the MWA
data; A. Ewall-Wice et al. (2021) proposed filtering the
foreground using the discrete prolate spheroidal sequence
(DPSS; D. Slepian 1978), which was later applied to the
CHIME observations (M. Amiri et al. 2023; CHIME
Collaboration et al. 2024); lastly, many machine-learning-
based methods such as Gaussian process regression
(G. B. Rybicki & W. H. Press 1992; F. G. Mertens et al.
2018; A. R. Offringa et al. 2019; N. S. Kern & A. Liu 2021)
and convolutional neural networks (M. Pagano et al. 2023)
have also gained growing interest in the community and have
been actively applied to real data.

While most of these methods perform reasonably well on
data that are not heavily flagged (A. Chakraborty et al. 2022;
M. Pagano et al. 2023), an important question yet to be fully
addressed is how these methods impact the statistics of the
power spectrum estimator. The nontrivial correlation unavoid-
ably introduced in the Fourier space by incomplete frequency
sampling and the uncertainty in these methods itself could be
increasingly important as we flag more and more data.
A. Ewall-Wice et al. (2021) used an empirical covariance
matrix to estimate the effect of DPSS foreground filtering on
power spectrum window functions. N. S. Kern & A. Liu (2021)

investigated the effect of Gaussian process regression on power
spectrum window functions under the optimal quadratic
estimator framework. F. Kennedy et al. (2023) and J. Burba
et al. (2024) developed a Bayesian Gibbs sampling framework
to estimate uncertainties in the recovered power spectra in the
presence of flags. In this work, we focus on the statistical
impact on the 21 cm delay spectra introduced by the DPSS
inpainting method. DPSS inpainting has been shown in
M. Pagano et al. (2023) to have the smallest error in inpainting
narrow RFI gaps, and its linear nature allows us to more easily
examine its statistical impact. We use a Bayesian framework to
derive the uncertainties associated with the inpainted data. The
uncertainties and correlations introduced by data inpainting are
then incorporated into a quadratic estimator framework to
estimate their statistical impact on the 21 cm power spectrum.
Our results also take the effects of additional analysis steps
such as averaging across sidereal days, and coherent and
incoherent time averages into account. These results are applied
to the HERA phase II observations (L. M. Berkhout et al. 2024)
to construct a set of strategies to handle missing data in the
upcoming 21 cm power spectrum analysis.
This paper is organized as follows. In Section 2, we give an

intuition on why nonuniform data sampling can lead to
foreground ringing in the presence of systematic effects. This
intuition is further verified in Section 3 using a realistic
simulation. In Section 4, we introduce the DPSS inpainting
method and demonstrate its impact on the statistics of the
power spectrum estimator through our simulations. These
results are applied to data from HERA phase II observations in
Section 5. Conclusions are given in Section 6.

2. Motivation

To build intuition on how nonuniform data sampling can
affect the 21 cm power spectrum, consider the interferometric
response of two antennas, i.e., the visibility, measured at a
frequency ν,

( ) ( ) ( ) ( )^ ^ ^b s s b sV d I B
i

c
, , , exp

2
. 1ij ij ijòn n n

pn
= W - ⋅⎛

⎝
⎞
⎠

Here, i and j are antenna indices, I is the specific intensity of the
sky, Bij is the cross power beam, bij is the baseline vector, and ŝ
is the unit vector on the sky over which we integrate. A rough
estimator of the 21cm power spectrum can then be formed as

˜ ( ) ˜ ( ) ( )^ b bP V V, , , 221 cm, 1 2t tµa a a
*

where Ṽ is obtained by taking the delay transform (A. R. Parsons
& D. C. Backer 2009) of the visibility

˜ ( ) ( ) ( ) ( ) ( )b bV d V i, , exp 2 , 3òt n n g n pnt= -

in which γ(ν) is a tapering function chosen by the analyst.
Throughout this work, if not otherwise specified, we choose
γ(ν) to be the four-term Blackman–Harris window (F. J. Harris
1978; M. Kolopanis et al. 2019). In general, we can decompose
the delay-transformed visibility into

˜ ˜ ˜ ˜ ( )V s e n, 4= + +

where s is the signal from foreground emission, e is the desired
EoR signal, and n is the thermal noise. Because the foreground
emission is spectrally smooth, we expect the foreground signal
to be below the noise level beyond a certain delay depending
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on the baseline length (A. R. Parsons et al. 2012). This creates a
range in the delay space that allows us to more easily search for
the EoR signal, known as the EoR window (A. Datta et al.
2010; A. Liu et al. 2014).

If the observation is affected by RFI, causing some of the
frequency channels to be flagged, the EoR window can be
contaminated. We can write the flagged visibility as
Vflagged(ν) = V(ν) × w(ν), where w is a sampling function
that takes the value of 1 or 0. If we then take the delay
transform of the flagged visibility, by the convolution theorem,
we obtain

˜ ( ) ( ˜ ˜ )( ) ( )V V w , 5flagged t t=

where we use # to denote the convolution of two functions.
As the sampling function w is a sum of multiple top hat
functions, its delay transform will be of the form

˜ ( ) ( ) ( )w a a esinc , 6
i i i

i2 iåt p t= pn t

where νi and ai denote the location and width of the flag,
respectively. Since ˜ ( )w t has unbounded support, this will cause
the foreground ˜ ˜ ˜s s wflagged = to be no longer limited within
a certain delay range, leading to contamination of the EoR
window. This impact of missing data on power spectra is well
understood in the literature in different contexts. In this work,
however, we are focusing on a more subtle effect that arises
from averaging over data that might contain flags.

Consider the example of a drift-scan telescope. As the earth
rotates, a drift-scan 21 cm experiment can observe repeatedly at
the same local sidereal time (LST) to increase sensitivity. The
LST-averaged visibility after a long observation period can be
written as

( )
( ) ( )

( )
( )b

b
V

V w

w
,

,
, 7i i i

i i
avg n

n n
n

=
å ´

å

where i runs over the different sidereal days the visibility is
observed on. Here, we will consider the regime where none of
the frequency channels are flagged every day, i.e., ∑iwi(ν) > 0
for all ν. In this regime, if the visibility consists only of
foreground sky emission, cosmological signal, and thermal
noise, the nonuniform sampling of data will have little impact
on the final power spectrum since
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where /( )K w wi i j jº å and its delay-transformed counterpart K̃i

are a sum of sinc-like functions. Here, we assume only the
thermal noise component ni is different from night to night.31 In
this case, we see that the kernel K̃i induced by the nonuniform
sampling only introduces correlation in the noise spectrum.
Since the ˜ ˜K ni i terms still have zero mean, Ṽavg is still able to

give us an unbiased estimate of the cosmological signal in the
EoR window.
In reality, however, every component in the visibility can vary

from night to night due to systematic effects. For example, gain
uncertainties after calibration, small motions in the instrument, or
internal instrument couplings can all introduce tiny night-to-night
variations on the measured visibilities. If we quantify these nightly
varying systematic effects by a multiplicative bias (1 + εi), the
resulting LST-averaged visibility would be
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Here, even if we assume the multiplicative biases ε do not
depend on frequency, we see that

˜ ˜ ˜ ˜ ( ˜ ˜) ( ) ˜ ˜
( )

 V s e K s e K n1 .

10
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In particular, the terms proportional to ˜ ˜K si would lead to
contamination of the EoR window due to the convolution of the
kernel with the bright foreground component. We stress that such
a contamination exists even though for every frequency channel
we have measured some amount of good data. Moreover, unlike
thermal noise, the fluctuation in the systematic effects εi may not
be centered around zero and are usually highly uncertain, making
it difficult to remove the contamination simply via averaging the
data across some other axes. Quantifying and mitigating this
interplay between systematic effects and nonuniform data
sampling is precisely the subject of this work.

3. Simulation

As an illustration, we construct a simple interferometric array
similar to HERA and simulate its response to foreground sky
emission with various instrumental systematic effects. We
construct a seven-element interferometric array with the
antennas located on the vertices and the center of a hexagon
with a side of 14.6 m. The array layout can be seen in the
leftmost panel of Figure 1. Starting from Equation (1), we
simulate the visibility response from point sources in the
GLEAM catalog (N. Hurley-Walker et al. 2017, 2019) and the
diffuse emission given by the Global Sky Model (A. de
Oliveira-Costa et al. 2008; H. Zheng et al. 2017). We assume
each antenna has an Airy beam profile

/

/
(ˆ( ) ) ( ) ( )B
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2 2 sin

2 sin
, 111
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q f n
pn q

pn q
= ⎡
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⎤
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where J1 is the Bessel function of the first kind, θ is the zenith
angle, and a is the aperture radius, which we set to be 6 m
(A. R. Neben et al. 2016b; D. R. DeBoer et al. 2017). Here, we
simulate the array to observe the sky every 10 s over an
overlapping 1.5 hr period across 16 nights. The visibility is
sampled in 120 kHz wide frequency channels to imitate the
response of a HERA-like digital back end (L. M. Berkhout
et al. 2024). To simulate potential night-to-night fluctuations
due to systematic effects and investigate their interplay with
RFI flags, we consider the following additional ingredients to
our simulation:

31 We note that we also assume that the observation is taken at the exact same
grid of LST every night. This could cease to be true in practice due to
misaligned discretization in the instrument or choices made by the analysts.
The presence of such a slight deviation in nightly observing time can introduce
extra correlation in the power spectrum as investigated in M. J. Wilensky et al.
(2022).
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1. Antenna gain uncertainties. Calibrating the instrument
and solving for the antenna's gain solutions is a vital task
in 21 cm cosmology. While many calibration strategies
exist in the literature (D.A. Mitchell et al. 2009; S. Yata-
watta et al. 2008; A. Liu et al. 2010; I. S. Sullivan et al.
2012; J. L. Sievers 2017; W. Li et al. 2018; U. Armel
Mbou Sob et al. 2019; J. S. Dillon et al. 2020; P. H. Sims
et al. 2022; R. Byrne 2023; T. A. Cox et al. 2024), no
calibration method is perfect. Here, we consider a small
uncertainty in the observed visibility Vobs compared to the
underlying true visibility Vtrue by setting

( )*V g g V , 12ij i j ij
obs true=

where i and j are antenna indices and gj is the antenna-based
complex gain uncertainty. We model gj ≡ 1+ (a+ bi) with
a and b randomly drawn from a uniform distribution
between −0.05 and 0.05 for each antenna at each night to
simulate a ~5% uncertainty in gain solutions.

2. Beam perturbations. Accurate descriptions of the antenna
primary beam response are another key to a precise
measurement of the 21 cm power spectrum. However, the
antenna response can be subject to small changes due to
perturbations to the instrument itself. Here, we consider
another systematic effect that arises from random motions
in the feed. This is modeled with a generalized antenna
primary power beam profile (N. Orosz et al. 2019)
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where the perturbed pointing q¢ is defined as
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in which xi, yi represent a small perturbation in the feed
position and z is the height of the feed. Here, we assume

z = 4.5 m and draw xi and yi from a Gaussian distribution
with zero mean and σ = 2 cm (E. Rath et al. 2021) for
each antenna on each night of observation. The cross
power beam in Equation (1) is then obtained
as B B Bij i j= .

3. Instrument coupling. Another known concern for radio
interferometers is the potential coupling among antennas.
These couplings can occur internally in the analog signal
chain due to impedance mismatches or in the field
through reflections from one antenna to another. Because
of the delay in signal propagation, these instrument
couplings will cause the foreground signal to leak into
higher delay ranges. Here, we adopt a model presented in
A.T. Josaitis et al. (2022) and E. Rath et al. (2024) to
simulate this effect. The coupled visibility Vij

cpl is
modeled as
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where the coupling coefficient Γ ≡ a + bi is drawn
nightly by randomly choosing a, b ä [−0.01, 0.01]

4. Thermal noise. After modeling the signal and the
systematic effects, we add a noise realization to each
baseline for each time integration and frequency channel
according to the radiometer equation and the autocorrela-
tion visibilities (J. Tan et al. 2021)

( )
( ) ( )

( )t
V t V t

t
,

, ,
. 16ij

ii jjrmss n
n n

n
=

D D

Here ij
rmss denotes the standard deviation of the thermal

noise for the visibility measured by baseline bij, Vii is the
autocorrelation visibility measured by antenna i, Δν is
the correlator channel width, and Δt is the correlator
integration time.

5. RFI flags. We create two types of flags for each of the
antennas in our simulation during each night of

Figure 1. Left: example interferometric array layout we simulate in this work. Antennas are placed on the vertices and the center of a hexagon with a side of 14.6 m.
Center: example of the simulated flagging patterns we draw in this work. The top panel shows the flagging patterns for the baseline formed by antenna 0 and 1
summed over all nights of observation. A darker color indicates a higher amount of flags. The lower panel shows the overall percentage of good data as a function of
the frequency. Right: absolute value of the nightly visibilities at a particular local sidereal time (color lines) and the sidereal-day-averaged visibility with (solid black)
or without (dotted black) flags.
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observations. First, a channel at a given time and
frequency is randomly flagged according to a binomial
distribution with a probability of 0.001. These flags
mimic the effect from irregular short-timescale RFI
sources such as airplane reflections. Second, we create
RFI flags for a few frequency channels across an entire
night. For each night, we identify n ä {0, 1, 2} frequency
channels that are common to all antennas to flag. We start
by picking the flagged frequency channels with a uniform
weighting, and the channels that have been flagged the
night before will be more likely to be flagged to simulate
periodic RFI sources such as satellite communications or
TV stations. For each antenna, the RFI flags are centered
at these frequency channels with a randomly chosen
width of zero (not flagged) to three channels (the central
frequency channel and the two neighboring channels are
all flagged) to simulate leakage of bright RFI sources.

The middle panel of Figure 1 shows an example of the
flagging patterns for one baseline in our simulation. The nightly
variation in the visibilities due to changing systematic effects is
shown in the rightmost panel of Figure 1. The colored lines in
the top panel are nightly visibilities at a particular local sidereal
time and the black lines indicate the averaged visibility with
(solid) or without (dotted) flags. Although there exists only a
very small difference between the two averaged visibilities, we
will soon see that this could still introduce a nonnegligible
effect on the power spectrum, highlighting the necessity of
looking beyond frequency–time waterfall plots in diagnosing
systematic effects.

Figure 2 shows the delay spectra for a single 14.6 m baseline
following Equation (2). These delay spectra are formed by first
coherently averaging 300 s of visibilities after phasing them to
a common pointing center. The delay spectra within the 1.5 hr
window of observations are then averaged incoherently to
further increase the sensitivity. In Figure 2, the different color
lines show the delay spectrum from the visibility with different
systematics considered. These systematic effects themselves do

not have any significant impact on the power spectrum, as can
be seen in the left panel of Figure 2. However, once we include
flags during the sidereal-day averaging, this introduces
discontinuities in the visibility which raise the noise floor by
almost an order of magnitude. More quantitatively, going back
to Equations (9) and (10), this demonstrates that even if we are
in a regime where the systematic effect is below the noise level
in the EoR window ( ¯ ˜ ˜s ne at high delays), the ringing of
bright foreground modes due to RFI flags can cause these
systematic effects to be more prominent.
The flagging pattern that goes into the right panel of Figure 2 is

given in Figure 1. While in this example, one of the channels is
flagged around half of the time, causing a more significant
discontinuity in the averaged visibility, foreground ringing can
occur even when only a tiny fraction of the data are flagged.
Figure 3 shows the level of foreground ringing under a variety of
scenarios. In all these cases, we only change the flagging patterns
as shown in each of the panels on the left-hand side. For a
consistent comparison, the noise realization and the systematic
effects are kept the same. The bottom panel of Figure 3 shows an
example in which a tiny fraction (�10%) of flagged data across
the frequency range is still enough to cause contamination to the
EoR window. Figure 3 also shows that the significance of this
effect depends on both the width of the flags and the location of
the flags. In the second panel from the top, we move the large gap
from the first panel at around 80 MHz to the edge of the band, the
leakage of bright foreground modes to the EoR window is
significantly reduced due to the tapering function we applied.
Similar effects can be seen in the third panel where we replace the
wide gap in the first panel with a gap that is only a single channel
wide. While carefully choosing a frequency band to estimate the
power spectrum can help reduce the leakage of bright foreground
modes, a mitigation strategy for these gaps in the data is required
if we are to probe 21 cm power spectra at arbitrary redshifts of
interest.

4. Data Inpainting

The power spectra derived from our simulation in Section 2
show us that even with channels that are flagged less than 10% of
the time, one cannot simply average the remaining good data in
the presence of nightly varying systematic effects. Certain
mitigation strategies are still needed to avoid the low-level
ringing of bright foreground modes. A common method to deal
with missing data due to RFI is to fill in the data based on our best
guess of the signal, known as data inpainting (A. R. Parsons &
D. C. Backer 2009; G. Paciga et al. 2013; N. Barry et al. 2019;
C. M. Trott et al. 2016; A. Ewall-Wice et al. 2021). Here, we will
focus on a particular linear data inpainting method utilizing the
DPSS (D. Slepian 1978; A. Ewall-Wice et al. 2021). Our
inpainting procedure is discussed in Section 4.1. In Section 4.2 we
calculate the uncertainties and correlations in the visibility
introduced by the inpainting procedure. The impact of inpainting
on the final power spectrum estimator is discussed in Section 4.3.

4.1. Inpainting Method

As the contamination on the EoR window comes from the
ringing of bright foreground modes, in order to mitigate this
effect, we would like to fill the gap in our data with our best
guess of the signals from the foreground combined with
systematic effects without introducing extra structures in the
high-delay modes. This can be achieved by choosing a set of

Figure 2. Comparison of power spectra of simulated flagged and unflagged
visibilities from a single 14.6 m east–west baseline with various systematics
effects. For a consistent comparison, we use simulated data with the exact same
noise realization and the same realization for all the systematic effects. The
only difference between the same line in the left and the right panel is in
whether some channels are flagged or not during the sidereal-day average. The
flagging pattern that goes into this particular case can be seen in Figure 1.

6

The Astrophysical Journal, 979:191 (19pp), 2025 February 1 Chen et al.



band-limited basis functions fi(ν) in the frequency space with
Fourier dual that is localized in a certain delay range. Such a set
of basis functions is known as the discrete prolate spheroidal
sequence (DPSS). Here, we follow D. Slepian (1978) and re-
derive the properties of DPSS for the reader's convenience. Let
[ν0 − W/2, ν0 + W/2] be the frequency range where one is
inpainting data, and [−T, T] be the delay range we want our
model to be localized in. We would like to find a sequence fi(ν)
that maximizes
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where we use f̃i to denote the Fourier dual of fi. Using the
Parseval–Plancherel identity, the denominator of Equation (17)
can be written as
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in which we use the fact that f is band-limited. Meanwhile, the
numerator of Equation (17) gives
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where ˜( )B T;t is a top hat function in the delay space with a
width of 2T and B is the inverse Fourier transform in the
frequency space
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In particular, this shows us that a set of solutions to
Equation (17) can be found by solving for the band-limited
eigenfunctions fi of
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In the discretized version, our desired basis can be obtained by
solving for the eigenvectors to the matrix
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known as the prolate matrix. The eigenvectors to the prolate
matrix are precisely the DPSS. While these eigenvectors form a
complete set of bases, depending on their eigenvalue, not all of
them have a highly concentrated power in our desired delay
range. Following Equation (17), the eigenvalues λi are strictly
between 0 and 1. It has been shown that the eigenvalues are
either close to 1 or to 0 with only a few in the transition zone
(S. Karnik et al. 2020). In this work, we choose T = 500 ns and
select fi with λi� 10−12 to form a set of basis functions to fit
for the foreground signal in the flagged channels. A lower
eigenvalue cut here ensures that we have a more complete basis
for the signal that is localized in the [−T, + T] delay range.
While this also gives us some eigenvectors with some structure
in the high-delay EoR window, the number of these
eigenvectors is fairly limited. We note that ideally, the value
T should be chosen at the horizon scale τH ≡ |b|/c for each
baseline b. This allows the chosen DPSS basis to capture all the
bright foreground modes without affecting the EoR window.
For the shortest 14.6 m baseline in our array, τH ~ 50 ns. In
reality, one often chooses a T that is slightly larger than τH to
also capture any foreground leakage beyond the wedge due to
systematic effects. In this work, we choose T = 500 ns as it has
been shown in data obtained by the Phase II HERA

Figure 3. Power spectra with or without data inpainting under different
simulated flagging patterns. Similar to Figures 1 and 2, each row shows the
flagging patterns (left) and the corresponding power spectra (right) for one
14.6 m east–west baseline integrated over 16 nights. For a consistent
comparison, the noise realization and the systematic effects are the same
across the four different columns, the only difference is in the flagging patterns.
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observations that foreground can leak to such a delay due to
mutual coupling of antennas (E. Rath et al. 2024).

Once a set of basis { }fi i
N

1= is chosen, we can obtain our best
guess of the foreground structure parameterized by these basis
functions through the unflagged data. This is achieved by
finding a set of coefficients b that solves the linear system

( ) ( )v W Ab n , 23obs = +

where vobs is the observed data, Aij = fj(νi) is the design matrix,
and W is a diagonal matrix that is 1 for unflagged channels and
0 otherwise. The maximum likelihood estimator of b is then

( ) ( )† † † †b̂ A W N WA A W N Wv , 241 1
obs= - + -

where M+ denotes the Moore–Penrose pseudoinverse of a
matrix M and N ≡ 〈nn†〉 is the noise covariance matrix.
Although we do not know the noise properties for the channels
that are flagged, only the combination †W N W N1

u
1º- - appears

in Equation (24). Here, we assume the noise at different
frequency channels are independent of each other and write
Nu

1- as a diagonal matrix as follows

/
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0 otherwise,
25kk

k k
u

1
rms 2s n n

=- ⎧
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where σrms is given in Equation (16). Thus, the estimator b̂ depends
solely on the information from unflagged frequency channels.

With these best-fitted DPSS coefficients, we can inpaint the
flagged channels with the predicted foreground model. The
entire inpainted visibility can thus be written as

( )
[ ( ) ( ) ] ( )† †

^v Wv I W Ab

W I W A A N A A N v . 26

inp obs

u
1

u
1

obs

= + -

= + - - + -

For simplicity, we will denote the inpainting operator as inp

from here on. We note that the inpainted visibility is obtained
with a completely linear operator on the observed visibility
vector at a given time instance. The dashed blue lines in
Figure 3 show the resulting power spectra if we inpaint over the
flagged channels each night. Even though the simulated
visibilities contained nightly varying systematic effects, we
can see that our inpainting procedure is still able to reduce the
discontinuities in the data and achieve the expected sensitivity.

4.2. Uncertainties in the Inpainted Data

While the empirical success of using inpainting to mitigate
missing data due to RFI is demonstrated in Figure 3 and in the
previous literature, one concern is how these data inpainting
methods can affect the statistics of the 21 cm power spectrum
as more and more channels are flagged. The uncertainties we
choose to propagate are a subtle balance between formal
statistical and practical considerations to which we devote
some pedagogical discussion. Readers interested in the results
can jump directly to Equation (34).

A typical error propagation technique when applying a linear
operation to some data is to consider a frequentist thought
experiment, where one repeatedly inpaints realizations of vobs
with a fixed underlying signal, to obtain realizations of vinp.
This allows us to compute the covariance which will simply be

† Ninp u inp with inp defined in Equation (26).32 To examine
this form of covariance, let Pf and Pu be the projection
operators on the flagged and unflagged channels, respectively.
Then, on the unflagged channels, the uncertainties are

( )† † † P N P P N P N . 27u inp u inp u u u u= º ¢

On the other hand, on the flagged channels, let
( )† † P A A N A A Ninp f u

1
u

1º¢ - + - be the inpainting operation that
maps the observed data vobs into a model, which we use to
inpaint the flagged channels. The uncertainties on the flagged
channels are

( )† † † P N P N . 28f inp u inp f inp u inp=

We see that the uncertainties in the flagged channels
correspond to a linear combination of uncertainties in the
observed channels. Since there are usually significantly more
unflagged data than flagged data, this results in a covariance
matrix that often expresses more uncertainty in the unflagged
data than in the flagged data. While this result is formally
correct under the frequentist assumptions given above, as we
propagate such a covariance matrix into our power spectrum
estimation framework in Section 4.3, it has the uncomfortable
side effect of giving more weight to inpainted solutions in the
flagged channels than the actual measured data in the unflagged
channels.
If we cast inpainting as an inference problem, there is an

alternative Bayesian formulation in terms of the posterior
predictive distribution, ( | )v v N AP , ,obs

¢ , that does not have this
undesirable property. Here, v¢ is the hypothetical unobserved
RFI-free visibility in the flagged channels including the thermal
noise that would corrupt it, and vobs is the observed visibility.33

As before, N is the full frequency–frequency noise covariance
and A is the design matrix of a given basis that maps a set of
coefficients b to a foreground shape in the frequency space. In
Bayesian inference, probability is an extension of Boolean
logic where propositions may be ascribed an uncertainty rather
than a strict binary truth value. The posterior predictive
distribution answers the question, “Given some known prior
information, including a model that is assumed to completely
describe the processes in the data, and some observed data,
what is the probability (density) that some unobserved data lie
in the (infinitesimal) interval [ ]v v vd,inp inp inp+ ¢ ¢ ?”
The posterior predictive distribution can be calculated by

marginalizing over b as follows

( | )

( | ) ( | ) ( )

v v N A

b v b N A b v N A

P

d P P

, ,

, , , , , 29

obs

inp f obs uò=
¢

¢ ¢

where we use Nu to denote the noise covariance of the observed
data and †N P NPf uº¢ for the noise variance of the hypothetical
RFI-free data in the flagged channels. While Nu can be

32 While strictly speaking, Nu
1- as defined by Equation (25) has no inverse, the

infinite variance in the flagged channels in Nu does not affect our calculations
as it is always projected out.
33 We note that unlike in the previous subsection where vinp is a vector with
dimension Nfreq, vinp

 now has dimension Nfreq,flagged. This is because, by
construction, we only inpaint data and predict a solution for the visibility in the
flagged channel. Therefore, in the Bayesian approach, we are only interested in
the probability distribution of the underlying visibility in the unobserved
channels given the observed data.
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estimated using the autocorrelations as in Equation (25), we do
not know N ¢, i.e., the noise properties in the flagged channels,
a priori. However, since the autocorrelations are very smooth,
we can safely assume that we can interpolate the autocorrela-
tions over the flagged channels and infer N ¢ with very low
uncertainty.

The two factors in the integrand of Equation (29) are the
intrinsic uncertainties in the flagged channels, conditioning on
an underlying signal predicted by b, and the uncertainties in the
signal model b itself. The two terms can be written as

( | )
[ ( ) ( )] ( )†

v b N A

v P Ab N v P Ab
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exp , 30
f

f f
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fµ - - ¢ -
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and assuming a flat prior on b,
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Note that the maximum likelihood estimator b̂ given in
Equation (24) is where ∂P(b|vobs, Nu, A)/∂b = 0. We show
in the Appendix that integrating Equation (29) gives
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where

( ) ( )† N N N . 33uinp f¢ º + ¢¢ ¢

We therefore see that the uncertainties in the inpainted channels
indeed come from two sources: (1) the intrinsic noise
uncertainties in these channels described by Nf

¢; (2) the
posterior uncertainties associated with inferring v¢ from vobs.
We note that the second term here is exactly the same as the
uncertainties on the flagged channels from the frequentist
approach. Since each element of Nf

¢ is similar to that of Nu, the

combination of the frequentist uncertainties with Nf
¢ means that

the inpainted data will have larger uncertainties than the
unflagged data in our new formalism.

To generalize this to a full frequency–frequency covariance
for inpainted visibility vinp, we propose the following
modification to the frequentist covariance

( ) ( )† N N N . 34uinp f inp inpº +

This form of the covariance matrix has several desirable
qualitative features. It has the full posterior predictive
distribution's uncertainty in addition to the correlations between
the inpainting solution and any noise affecting the data used for
inference. It does not give more weight to the (highly
incomplete) model predictions in the flagged channels. In the
absence of any flagging, it reduces to the standard error
propagation procedure, which is to just propagate the thermal
noise variances.

We note that in a fully Bayesian treatment, we would
propose a model that fully describes the observed data to the
best of our ability, and there would be no essential need to
consider the relationship between the flagged and unflagged
data. One would summarize the unknown values of the model
parameters using the posterior distribution conditioning on the
observed data and pass this forward to power spectrum

estimation (F. Kennedy et al. 2023; J. Burba et al. 2024). For
inpainting, however, we choose a model only to smooth out
spectral irregularities from RFI flags in order to generate the
power spectrum under the quadratic estimator framework (see
Section 4.3). Our model is deliberately chosen to be incomplete
in a very critical way: it has essentially no structure beyond
some delay by construction. We therefore do not choose the
fully Bayesian approach but explore this alternative approach
by framing the process of inpainting into an inference problem
and extracting the correlation between the inpainting solution
and the observed data. In Section 4.3, we will utilize the result
derived here to incorporate the effect of inpainting into our
power spectrum quadratic estimator.
Figure 4 shows the performance of our inpainting method

across flags with different widths at different locations of the
band. The solid black line is the simulated visibility at a single
time instance at a single night from a single 14.6 m baseline.
We flag the simulated visibility with two five-channel-wide
gaps on the left and two 10-channel-wide gaps on the right. The
dashed orange line shows the best-fit inpainted model ^Ab. The
uncertainties indicated by the shaded region are given by

/( ) ( )† N N 2i iif inp u inps n = + ¢¢ , where the factor of 2 comes
from the fact that we are looking only at the uncertainties in the
real part of the visibility. Compared to the true underlying
visibility (solid black line), we can clearly see that the
inpainting models are less constrained across larger gaps or
gaps near the edge of the spectral window. While the best-fit
inpainting model can be highly biased in these cases, we stress
that the final goal of inpainting is to smoothly connect signals
in the visibility space to enable us to generate a power spectrum
free from the bright foreground ringing. Thus, the success of
the inpainting method needs to be examined in the power
spectrum space, which we will discuss next.

4.3. Impact on Power Spectrum Covariance

While the inpainted visibility might not perfectly recover the
true data, the primary goal of inpainting is merely to smoothly
connect gaps in the visibility space without introducing the

Figure 4. Uncertainties in the inpainted visibilities for various types of flagged
channels. The solid black line is the simulated visibility at a single time
instance at a single night from a single 14.6 m baseline. We flag the simulated
visibility with two five-channel-wide gaps on the left and two 10-channel-wide
gaps on the right (shaded gray region). The dashed orange line shows the best-
fit inpainted model with the 2σ uncertainties given in the shaded region. This
can be compared with the dotted black line which represents the underlying
true simulated visibility in the flagged region.
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bright foreground ringing in the power spectrum estimator.
Therefore, the most important quantity to examine is the
statistical impact of inpainting on the power spectrum
estimator. Here, we focus on the delay power spectra derived
under the quadratic estimator (A. Liu & M. Tegmark 2011;
A. R. Parsons et al. 2014) formalism. Here, we give a brief
summary of the delay power spectra estimator and the
evaluation of its statistical properties.

A per-baseline quadratic estimator P̂ of the αth band power
of the 21 cm delay power spectrum can be written as

( )†^ v E vP , 35ºa a

where v is the visibility vector, and E is chosen by the analyst.
For simplicity, we consider an estimator that performs a
straightforward discrete Fourier transform.

( )†E R Q RM , 36DFT,ºa ab
b

where ( )Q eij
iDFT, 2 i j=b p t n n-b does the delay transform. Here, we

choose Rij = γ(νi)δij to be just a tapering matrix, and Mαβ is the
normalization factor, which will be specified later.

The expectation value of the estimator is

[ ] ( )^ E CP tr , 37á ñ =a a

where C ≡ 〈vv†〉 is the data covariance matrix. In general, we
can decompose the data covariance into

( )C C N, 38sig= +

where N is the noise covariance and Csig represents the signal
covariance from both the foreground sky emission and the
cosmological 21 cm signal. Using Equation (1), the signal
covariance can be written as
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where η and u is the Fourier dual of frequency ν and spatial
coordinate θ, respectively, P(u, η) is the true signal power
spectrum, P̄a represents the averaged band power within a
narrow bin of η, and ˜( )uB , in is the spatial Fourier transform of
the antenna primary beam profile which we assume to be
relatively compact as a function of u. Therefore,

[ ]
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¶
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Here, Wαβ, often called the window function (A. Liu &
M. Tegmark 2011; A. Gorce et al. 2023), represents the
connection between the power spectrum estimator and the
underlying true power spectrum. bα is the noise bias in our

estimator, which can either be subtracted by the analyst or can
be avoided by forming an estimator using visibilities from
different times (a technique known as time interleaving; J. Tan
et al. 2021). The normalization matrix Mαβ can now be chosen
such that the window function is power-conserving, i.e.,

( )W 1. 41å =
b ab

Meanwhile, the covariance of the power spectrum estimator
can be obtained as (J. Tan et al. 2021)

[ ] ( )

† †^ ^ ^ ^

E C E N E NE C E NE N

P P P P

tr , 42sig sig

S ºá ñ - á ñá ñ
= + +

ab a b a b

a b a b a b

where we have ignored the contribution from cosmic variance.
We note that the power spectrum covariance here includes the
signal-noise cross terms that are important in the signal-dominated
regime (M. Kolopanis et al. 2019; J. Tan et al. 2021).
To include the impact of data inpainting, we can substitute

the data covariance matrix to the covariance of the inpainted
visibility v vinpinp obs= . Naively, the covariance of the
inpainted visibility is therefore

( )

† †

† †

 

   

C v v

C N . 43

inp
inp obs obs inp

inp sig inp inp inp

= á ñ

= +

However, as discussed in Section 4.2, the term † Ninp inp only
captures the uncertainties in the inpainted model due to the
noise in the unflagged channels but does not fully capture the
intrinsic uncertainties associated with the flagged channels if
we were to observe them. In other words, even if the inpainting
model can be determined perfectly, there should still be a term
that corresponds to the uncertainties due to thermal noise so
that inpainting does not artificially increase our sensitivity.
Therefore, we model the data covariance after inpainting as

( )† †   C C N N . 44f
inp

inp sig inp inp u inp= + +

Here, we define † C Csig
inp

inp sig inpº and † N Ninp
inp u inpº +

Nf . We note that Equation (44) denotes the covariance of
inpainted visibility at a single time instance and a single night of
observation. In practice, we coherently average the inpainted
visibility vinp

tavg across different sidereal days and within a 300 s
window before making the power spectrum. Since the flagging
pattern can be different from time to time, inpainting is thus a
time-varying operation. The covariance for the time-averaged
visibility vector is then

( )

( )

†

†

 

 

v v C

N N

Cov ,

, 45

n n ij i j

i i i i f i

inp
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inp
tavg 1

inp, sig inp,

inp, u, inp, ,

night
2

coherent
2= å

+ å +

⎡⎣

⎤⎦
where nnight is the number of nights we observe, ncoherent is the
amount of data samples within a 300 s window, and the index i
and j run through all the times and days we average over.
Figure 5 shows the noise (co)variance of the inpainted visibility

calculated through the last two terms in Equation (45). Here, the
visibility is from a single 14.6 m baseline in our simulation after
coherently averaging across sidereal days and a 300 s window.
The percentage of unflagged data as a function of the frequency
can be seen in the top panel of Figure 5. The variance and the
covariance of the inpainted visibility are given as the solid black
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line in the middle panel and the bottom panel, respectively. We
can see that at the frequency range where there is no flagged
channel (i.e., 100% good data), the noise covariance is completely
diagonal and simply follows Nu. Meanwhile, inpainting intro-
duces a correlation between the flagged channel and the unflagged
channel which can be clearly seen in the bottom panel of Figure 5.

Unfortunately, it might not always be computationally
feasible to propagate the full-covariance matrix. One simpli-
fication one could make is to ignore the off-diagonal correlation
and develop an approximation for the variances. For com-
pletely unflagged channels, the variances are estimated with the
radiometer equation combined with the antenna's autocorrela-
tion

( ) ( )
V V

N t
, 46ij

ii jj2

sample
s n

n
=

D D

where Nsample traces the amount of data we coherently
combined, in this case, nnight × ncoherent. For channels with
flagged data, there are intuitively two ways to assign Nsample.
One is to assume we have perfectly predicted the signal in the
flagged channels through inpainting, and these flagged
channels contain as much information as other unflagged
channels. This is the same as assuming the noise covariance is
just Nu + Nf, and ignoring the uncertainties in inpainting. The
variance predicted by this approach is shown as the dashed
magenta curve in the middle panel of Figure 5. A more
conservative approach is to assume that the flagged channels
contain no information at all even after inpainting. This can be
achieved by modifying the Nsample parameter and assuming
flagged channels do not contribute to Nsample. The variance
calculated from this approach is given in dashed–dotted green.
In reality, inpainted channels do contain some information
inferred from the neighboring channels. We see that the
variance calculated by propagating the full-covariance matrix
lies in between the two approximations.
Figure 6 shows the delay power spectrum from the inpainted

visibility and various power spectrum statistics discussed
above. The solid black line in the top panel shows the power
spectrum for the same inpainted visibility presented in
Figure 5. The three dotted lines show the error in the power
spectrum estimator obtained by using three different forms of
noise covariance for the inpainted visibility in Equation (42).
Here, the error power spectrum PSN is defined to be the square
root of the diagonal terms of the full power spectrum
covariance (J. Tan et al. 2021), i.e.,

( ) ( )P k , 47SN º Sa aa

where Σαβ is given in Equation (42). The dotted black line is
obtained by using the full noise covariance given by
Equation (45), while the two colored lines are from the two
approximations discussed above. We see that while the variance
of inpainted visibility in the frequency space is bounded by our
two approximations as shown in Figure 5, the off-diagonal terms
in the full frequency–frequency covariance matrix make the
resulting uncertainties in the power spectrum space higher than
either one of our approximations. In the case where not a
significant amount of data are flagged, we see that the
conservative approach (dotted green, which assumes inpainted
data do not contribute to the Nsample in the noise estimate in
Equation (46)) gives a reasonable approximation to the error
obtained by propagating the full-covariance matrix. Scenarios
where this ceases to be true will be discussed in Section 5.2.
The lower panel of Figure 6 shows the window functions for

the delay power spectrum estimator at different delay bins. The
solid gray lines in the background are the window functions
obtained without including the effect of inpainting, i.e., using
Equations (40) and (39). To include the effect of inpainting,
following Equation (45), the window functions become

( )† E
C

W
n n P

1
tr , 48

ij i j
inp

night
2

coherent
2 inp,

sig
inp,å=

¶

¶ab a
b

⎡
⎣⎢

⎤
⎦⎥

where the index i and j run through all the times and days we
average over. The resulting window functions are shown as the
colored lines in the lower panel of Figure 6. Here, the

Figure 5. Statistics of inpainted data in the visibility domain in our simulation.
Top: overall percentage of good data in the simulation as a function of the
frequency. The results presented here are for a single 14.6 m baseline at a
single time instance after coherently averaging across sidereal days and a 300 s
window. Center: estimates of the noise variance in the inpainted visibility from
a full-covariance treatment (solid black) and two different approximations
(dashed and dashed–dotted). Bottom: frequency–frequency noise covariance
matrix including the effect of inpainting obtained from the last two terms in
Equation (45).
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difference between including and not including a proper
treatment of the effect of inpainting is small as not a large
percentage of data are flagged. The effect of inpainting on
window functions will be further examined in Section 5.2.

5. Application to HERA

Equipped with the intuition and statistical tools from the
previous sections, in this section we discuss the application to the
Phase II data obtained by HERA. HERA is a drift-scan EoR
experiment with 350 parabolic 14m dishes located in the Karoo
desert in South Africa. HERA Phase II involves an upgrade to the
Vivaldi feeds that allows for observations in a wider frequency
range from 50 to 250MHz. In Section 5.1, we introduce a small set
of HERA Phase II observations taken in 2022 October. Detailed
strategies for inpainting and results are given in Section 5.2.

5.1. Data and Flags

The first season of scientific observation for HERA Phase II
began in 2022 October. A preliminary analysis of the first 14

nights of high-quality observations was performed. While over
170 antennas were constructed at the time, only ~90 were
producing good data passing various stringent antenna metrics.
The data presented here have passed through multiple stages

of analyses in order to properly calibrate the data and detect
RFI. The calibration strategy adopted here is similar to the
HERA Phase I analyses (Z. Abdurashidova et al. 2022; HERA
Collaboration et al. 2023). The RFI flagging pipeline has been
upgraded in the Phase II analysis to better capture time-varying
broadband RFI that are likely the results of lightning. The
details of the RFI identification routine are documented in the
HERA Team Memos (J. Dillon & S. Murray 2023; S. Murray
et al. 2023; J. Dillon et al. 2024); here we give a brief summary
of the RFI flagging process.
In general, RFI in the HERA data are identified through a

combination of different metrics to isolate the outliers. For the
data presented here, two types of flags are created. The first is
an antenna flag where we flag bad antenna polarization across
the band. These flags are created on a nightly basis, first for
every two integration times, and later harmonized so that we
continuously flag an antenna across a large period if it is
flagged for a significant percentage of times within. The second
type of flag is an array-wide RFI mask. These flags are created
nightly by identifying misbehaving time and frequency
channels in the array-averaged autocorrelation functions and
cross-correlation functions. Such a mask can capture low-level
RFI as they can only be seen after we average down the data to
increase sensitivity.
Figure 7 shows the amount of good data for the shortest

east–west baseline group across 14 nights of observations. For
the remainder of this section, we focus on the data below the
FM radio band, which was previously inaccessible by the
Phase I instruments. The low-band data offer a unique
opportunity to observe deep into the cosmic dawn but also
present significant challenges due to the brighter foreground
contamination. Mitigating any potential leakage of bright
foreground modes is therefore even more crucial at this
frequency range.

5.2. Inpainting Strategies and Results

Following the methodology outlined in Section 4.1, the
HERA data are inpainted with a DPSS basis localized within
±500 ns in the Fourier space. As we discussed in Section 4.1,
we choose 500 ns so that the DPSS basis not just captures the
bright foreground modes within the wedge, but also any
potential foreground leakage due to systematic effects. While
this does mean that we are inpainting into the EoR window for
some baselines, the formalism developed in Section 4 makes
sure that we are able to accurately take into account the impact
of inpainting in these delay ranges. To reduce the uncertainties
in inpainting, we fit the DPSS basis to all the data points below
the FM radio band (A. Ewall-Wice et al. 2021; N. S. Kern &
A. Liu 2021). Following this inpainting step, we select a
12MHz frequency window (marked in green in Figure 7) to
examine the power spectrum.
To demonstrate the necessity of data inpainting, we calculate

the delay power spectra within this frequency window with or
without inpainting in Figure 8. The power spectra are derived
from 14 nights of data observed by all the 14.6 m east–west
baselines with a 300 s coherent time average and a 1.5 hr
incoherent time average. Similar to what we have already seen
from the simulation, the delay spectrum from the inpainted

Figure 6. Delay power spectrum and power spectrum window function from
inpainted visibility in our simulation. The delay spectrum is obtained with the
inpainted visibility of a single 14.6 m baseline after coherently averaging
across sidereal days and a 300 s window. The delay spectrum is further
averaged incoherently within a 1.5 hr window. Top: delay power spectrum
(solid black) and error estimates (dotted lines). The three dotted lines
correspond to power spectrum error bars calculated with different inpainted
noise covariance matrices as in Figure 5. Bottom: power spectrum window
function obtained through Equation (40). The gray lines show the window
functions if we ignore the effect of inpainting while the color dashed lines
include the impact of inpainting using Equation (48).
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visibility (solid blue) agrees well at high delay with the
expected sensitivity obtained through the radiometer equation
(dotted black). Meanwhile, even though every frequency
channel within this band of interest has at least 60% good
data, we see that the resulting power spectrum (dashed orange)
from directly averaging the visibilities across sidereal day
exhibits significant leakage of bright foreground modes. The
result without inpainting is more than one order of magnitude
away from the expected noise floor. This demonstrates two
points: (1) nightly varying systematic effects exist in the HERA
Phase II data, and (2) inpainting over gaps due to RFI on a
nightly basis is necessary to reduce the interplay between flags
and systematic effects. We note that we also observe deviation
from the expected noise level at a lower delay (�1000 ns) even
when inpainting is performed. This is due to other systematic
effects such as instrument coupling (N. S. Kern et al. 2019;
A.T. Josaitis et al. 2022; E. Rath et al. 2024) and can be
mitigated with additional analysis steps (N. S. Kern et al. 2019;
H. Garsden et al. 2024; R. Pascua et al. 2024). These additional
systematic mitigation strategies are not employed here for
simplicity.

Figure 9 shows the power spectrum from the nightly
inpainted HERA Phase II data together with all the statistical
quantities discussed in Sections 4.2 and 4.3. Similar to
Figure 5, the panels on the left-hand side show the properties
of the inpainted visibility in the frequency space. The lower-left
panel shows the frequency–frequency noise covariance matrix
after inpainting following Equation (45) while the variance is
shown as the solid black line in the middle panel. An

approximation to the variance from the full-covariance matrix
is given in the dashed–dotted green line. This is the
conservative approximation shown in Figure 5 as it has been

Figure 7. Percentage of good data for the shortest east–west baseline group across 14 nights of observations with the HERA Phase II instruments. The upgraded
Vivaldi feed extends our observation range roughly from 50 to 250 MHz. The gray region is excluded due to heavy contamination from FM radio. The 12 MHz wide
frequency range, which we use to derive sample power spectra, is marked in green.

Figure 8. Delay power spectra from the H6C Phase II data with (solid blue) or
without (dashed orange) nightly inpainting. The power spectra are derived from
14 nights of data observed by all the 14.6 m east–west baselines with a 300 s
coherent time average and a 1 hr incoherent time average. The frequency range
where the power spectra are derived and the RFI flagging pattern in the data
can be seen in the green band in Figure 7. The expected sensitivity for these
data obtained through the radiometer equation is given in the dotted line.
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shown to better approximate the power spectrum error bar in
Figure 6. We note that for the conservative approximation, we
assign Nsample in Equation (46) using only the number of
unflagged channels. Here, for channels that are completely
flagged across all nights, we take Nsample to be the smallest
positive number across the band to avoid dividing by zero in
Equation (46).

The right two panels of Figure 9 show the resulting power
spectrum and various power spectrum statistics for the nightly
inpainted HERA Phase II data. We note that the power spectra
are derived from a subset of the frequency range where we
inpaint the data. All the power spectrum statistics shown here
are derived with the covariance matrix projected to the
frequency subspace where we calculate the power spectrum
estimator. We see that in the presence of only a small fraction
of flagged data, the approximated PSN agrees well with PSN
derived from the full frequency–frequency covariance, and the
effect of inpainting on the window function is also negligible.

However, as we inpaint over more data or over larger gaps,
our proposed approximation might not be able to faithfully
capture the impact of inpainting on power spectrum statistics.
To determine the cases where the effect of inpainting is no
longer statistically negligible, we artificially inject flags of
different widths into the observed data. To maximize the effect

of missing data, we position the flag at the center of the
frequency band where we derive the power spectrum
(~81MHz). Figures 10 and 11 show the resulting changes in
power spectrum statistics as a function of the flagged channel
width. In Figure 10, we introduce flags with different widths in
1 out of the 14 nights of data while flags are introduced every
night in Figure 11.
The top panels of Figures 10 and 11 show the delay power

spectra (solid lines) and error estimates (dotted lines) derived
from the full covariance of the inpainted visibility. We see that
as the width of the injected flag increases, especially when
flagging over all 14 nights, the amplitude of the power
spectrum decreases at lower delays. This is because of the
correlation introduced by inpainting. Inpainting over large gaps
causes the low-delay modes to correlate strongly with high-
delay modes. The power at lower delays is thus diluted as we
are measuring a weighted average of the intrinsic power at low
and high delays. It is therefore important to carefully take the
power spectrum window function into account when interpret-
ing data with a significant amount of flags.
Meanwhile, the ratio between the full-covariance error

estimates and the approximation is given in the second panel of
Figures 10 and 11. In the case where only 1 out of the 14 nights
is flagged, our approximated error estimates always

Figure 9. Statistical properties of nightly inpainted visibility from the HERA Phase II data. Similar to Figure 8, the results shown here are derived from data observed
by all the 14.6 m east–west baselines in the array. The visibility is coherently averaged across 14 nights of observations and a 300 s window. Left: statistical properties
in the frequency space including flagging ratio and (co)variance of the inpainted visibility data. Right: statistical properties in the Fourier space including delay power
spectrum, power spectrum error estimate, and the window function.
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underestimate the error. This is because even though the
approximation agrees well with the diagonal terms in the full-
covariance matrix, the off-diagonal terms make the error in the
full-covariance approach higher. The two approaches do agree
well at high delays and the differences at low delays are within
50% for flags that are narrower than 15-channel wide. On the
other hand, when all 14 nights are flagged, our approximation
actually overestimates the noise level. This is because as
Nsample goes to zero, the estimated variance in the conservative
approximation becomes extremely large.34 This can be seen
from our approximation for some of the channels near
~60MHz in Figure 9. In the full-covariance matrix, these
completely flagged channels do not have infinite uncertainties
due to the sufficient amount of information from neighboring
channels where we infer the best-fit inpainting model.

The bottom three panels of Figures 10 and 11 show the
window functions with the effect of inpainting over these
artificial flags. We see that in the case where the flagged
channel only appears on one of the nights, the effect of
inpainting on the window function is negligible, especially at
high delays. When all 14 nights are flagged, however, we see
that a flag that spans more than five channels can introduce
significant correlation in the Fourier space even at high delays,
making it crucial to correctly propagate the effect of inpainting
into power spectrum statistics.

6. Conclusion

Power spectrum analyses in 21 cm cosmology are particu-
larly sensitive to missing data or small discontinuities in the
data along the frequency axis. These spectral structures can
lead to the ringing of bright foreground modes in the Fourier
space, contaminating a large area of modes that are, in theory,
free of foreground signals.
In this work, we have identified a new source of

discontinuities. This arises from averaging measurements that
contain varying systematic effects and flagging patterns. Using
a realistic simulation, we have shown (Figure 2) that time-
varying flagging patterns can couple bright foreground modes
with systematic effects in the Fourier space, making systematic
effects that are otherwise below the noise level prominent in the
21 cm power spectrum. This effect can be seen even when each

Figure 10. Changes in power spectrum statistics as a function of the flagged
channel width. Here, we artificially flag channels in 1 of the 14 nights in the
observed HERA Phase II data and inpaint over them to investigate the impact
of inpainting over gaps with different widths. The flagged channels are placed
contiguously at the center of the frequency range (~81 MHz) to maximize the
effect of inpainting on the power spectrum statistics. From top to bottom: delay
power spectra (solid line) and error estimates (dotted line); ratio between the
power spectrum error estimates derived from the full inpainting covariance vs.
those derived from the conservative approximation described in Section 4.3;
window functions around different delay bins.

Figure 11. Same as Figure 10, but with artificially flagged channels across all
14 nights in the observed HERA Phase II data.

34 Formally speaking, the estimated variance goes to infinity as Nsample goes to
zero. To regularize this behavior, we use the minimal nonzero value of Nsample
across the frequency range where we inpaint instead of zero to estimate the
noise variance at the channels that are completely flagged.
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frequency channel in the averaged visibility contains more than
80% of unflagged data (Figure 3).

We have demonstrated that this discontinuity can be
suppressed by inpainting data prior to averaging. However,
as we inpaint over more and more data, it is crucial to correctly
estimate the uncertainties associated with these methods. In this
work, we have chosen to focus on inpainting via the the
discrete prolate spheroidal sequence (DPSS; D. Slepian 1978;
A. Ewall-Wice et al. 2021). Thanks to the linear nature of our
inpainting method, we have developed a framework to
incorporate the inpainting operation into the power spectrum
quadratic estimator. This allows us to accurately quantify the
effect of data inpainting on important statistical quantities such
as the power spectrum error bar and window function
(Figure 6).

We have applied the statistical tools developed in this work
to inspect a small set of data obtained by the HERA Phase II
instrument. To increase computational feasibility in future
analyses, we have proposed and tested methods that can well
approximate the power spectrum statistics. By artificially
introducing flags into the real data, we have quantified the
regime where we can safely adopt our proposed approximation
and neglect the effect of inpainting (Figures 10 and 11). Our
results provide a framework that allows us to carefully study
gappy data in the ever more noisy RFI environment as we
move toward detecting the 21 cm power spectrum.
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Many of the cosmological and astrophysical calculations in this
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(B. Diemer 2018) and astropy (Astropy Collaboration
et al. 2022). Plots are made available thanks to matplotlib
(J. D. Hunter 2007) and seaborn (M. L. Waskom 2021).

Appendix
Probability Distribution Function of the Inpainted

Visibility

In this appendix, we calculate the uncertainties in the
inpainted visibility v inp¢ in the flagged channels. Namely, we
wish to know the probability of the unobserved v inp¢ in the
flagged channels given the observed visibility vobs, the noise
covariance N, and the design matrix A that prescribes the shape
of the underlying signal. Following Section 4.2, we have

( | ) ( | ) ( | ) ( )v v N A b v b N A b v N AP d P P, , , , , , , A1obs obs uò=¢ ¢ ¢

where

( | ) [ ( )
( )] ( )

†v b N A v P Ab

N v P A

P

b

, , exp

, A2

inp f

f
1

inp f¢

µ - ¢ -

¢ -

¢ ¢

-

and

( )
( | ) ( | ) ( ) [ ( ) ( )]†

A3
b v N A v b N A b v Ab N v AbP P P, , , , exp ,obs u obs u obs u

1
obsµ µ - - --

assuming a flat prior on b. By taking ∂P(b|vobs, Nu, A)/∂b = 0,
we can solve for the mean of the Gaussian distribution
P(b|vobs, Nu, A) to be at37

( ) ( )† †b̂ A N A A N v . A4u
1 1

u
1

obs= - - -

Meanwhile, by examining quadratic terms in the exponent, we
know that the covariance must be ( )†A N Au

1 1- - . Therefore, we
can write

( | ) [ ( ) ( )( )] ( )† †^ ^b v N A b b A N A b bP , , exp . A5obs u u
1µ - - --

The integration in Equation (A1) can then be computed by
“completing the square”. We first note that we can rewrite
( ) ( )†v P Ab N v P Abfinp f

1
inp f¢ - ¢ ¢ -- into

( )

( ) ( )

( )

( ) ( )
( ) ( )( ) ( )

†

† † † † † † † †

† † † †

† † † † † †

† † † † † † †

A6

v P Ab N v P Ab

v N v b A P N P Ab v N P Ab b A P N v

v N v b A P N P A b

b A P N P A b b A P N P A b

b b A P N P A b b v N v b A P N P A b ,

inp f f
1

inp f

inp f
1

inp f f
1

f inp f
1

f f f
1

inp

inp f
1

inp f f
1

f

f f
1

f f f
1

f

f f
1

f inp f
1

inp f f
1

f

¢ ¢

¢ ¢ ¢ ¢

¢ - ¢ ¢ -

= ¢ ¢ ¢ + ¢ + ¢ ¢ + ¢ ¢

= ¢ ¢ ¢ + ¢ +

+ ¢ + ¢

= - ¢ - + ¢ ¢ ¢ - ¢

-

- - - -

- -

- -

- - -

35 https://github.com/Hera-Team
36 https://github.com/RadioAstronomySoftwareGroup

37 Formally speaking, the matrix †A N Au
1- might not be invertible as Nu is not

full rank. However, A† is a coordinate transformation that maps from a space of
dimension Nfreq to the space of DPSS coefficients. Since we have fewer DPSS
modes than the number of frequency channels, here we will assume †A N Au

1- is
invertible. This assumption holds if we only have a small amount of channels
that are flagged.
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where we have defined ( )† † † †A P N P A A P N vb f f
1

f
1

f f
1

inp¢ º ¢ ¢ ¢- - - .
Equation (A1) thus becomes

( )

( ∣ ) [ ( ) ]

[ ( ) ( )( ) ( ˆ) ( )

( ˆ)] [ ( )

( ˆ) (( ) ( ) ) ( ˆ)]

† † † †

† † † † †

† † † †

† † †

A7

v v N A v N v b A N A b

b b b A N A b b b b A N A

b b v N v b A N A b

b b A N A A N A b b

P P P

P P

P P

P P

, , exp

d exp

exp
.

inp obs inp f
1

inp f f
1

f

f f
1

f u
1

inp f
1

inp f f
1

f

u
1 1

f f
1

f
1 1

ò

¢ ¢

¢ ¢

¢ ¢

¢ ¢

¢ µ - ¢ ¢ ¢ + ¢

´ - - ¢ - - -

´ - µ - ¢ ¢ ¢ + ¢

- - + ¢ -

- -

- -

- -

- - - - -

To simplify the notation, we denote ( )†C A N Au u
1 1º - - and

( )† †C AP N P Af f f
1

f
1º ¢- - . Next, we will reduce Equation (A7) by

“completing the square” again. First, we collect all the terms
that are quadratic in v inp¢ , noting that † †b C A P N vf f f

1
inp¢ º ¢ ¢- ,

( )

( )

( ( )( ( ) )( ))

† † †

† † †

A8

v N v b C b b C C b

v N N AP C C C C C A P N v .

inp f
1

inp f
1

f u
1

inp f
1

f
1

f f f
1

f u
1

f f f
1

inp

¢ ¢ ¢ ¢- ¢ ¢ ¢ + - +

=- ¢ ¢ - ¢ - + ¢ ¢

- - -

- - - - -

We now show that

( )
( ( )( ( ) )( )

( )

† †

† A9

C N N P AC C C C C A P N

N N ,

1
f

1
f

1
f f f

1
f u

1
f f f

1

f inp u inp
1

º ¢ - ¢ - + ¢

= +

- - - - - -

¢ -

where inp
¢ is our proposed inpainting operator that maps

observed data vobs into a model that we use to inpaint the
flagged channels,

( ) ( )† †P A A N A A N . A10inp f u
1 1

u
1º - - -

To show this relation, we note that by the Woodbury matrix
identity,

( ) ( ) ( )C C C C C C C . A11f u
1

f
1

f
1

f
1

u
1

f
1+ = - +- - - - - -

Thus,

( ( ) ) ( ) ( )C C C C C C C . A12f
1

f u
1

f
1

f
1

u
1

f
1- + = +- - - - - -

This gives us

Hence

( ) ( )† †C N N P A C C A P N . A141
f

1
f

1
f f

1
u

1
f f

1= ¢ - ¢ + ¢- - - - - -

On the other hand, the Woodbury matrix identity also gives us

( )

( ) ( ( ) )

( )
( )

† † † †

† † † †

† †

A15

N N N P A A N A A P

N N P A C A P N P A A P N

N N P A C C A P N ,

f inp u inp
1

f f u
1 1

f
1

f
1

f
1

f u
1

f f
1

f f f
1

f
1

f
1

f u
1

f
1

f f
1

+ = +

= ¢ - ¢ + ¢ ¢

= ¢ - ¢ + ¢

¢ - ¢ - - -

- - - - -

- - - - -

which agrees with Equation (A14). Thus we have shown that

( )†C N N . A16f inp u inp= +¢

To examine the rest of the terms in Equation (A7), we note that
the term linear in v inp¢ can be written as

( ) ˆ

( ) ˆ

( ( ) ) ˆ

( ( ) ) ˆ

( ( ) ) ˆ

ˆ

( )

†

†

†

† † †

† † †

†

b C C b

v N P AC C C b

v N P AC C C C C C b

v N P A N P A C C A P N P A b

v N N P A C C A P N P Ab

v C P Ab.

A17

f u

inp f
1

f f f u

inp f
1

f f f
1

f
1

f
1

u
1

f
1

inp f
1

f f
1

f f
1

u
1

f f
1

f

inp f
1

f
1

f f
1

u
1

f f
1

f

inp
1

f

¢ +

= ¢ ¢ +

= ¢ ¢ - +

= ¢ ¢ - ¢ + ¢

= ¢ ¢ - ¢ + ¢

= ¢

-

- - - - - -

- - - - -

- - - - -

-

Combining all these results, we finally arrive at

( ∣ ) [ ( ˆ) ( ˆ)]
( )

†P v v N A v P Ab C v P Ab, , exp ,

A18
inp obs f

1
f¢ µ - ¢ - ¢ --

where † C N Nf inp u inp= +¢ ¢ ¢ , as promised in Equation (32).
We note that while the derivation is quite complicated here,
since everything is Gaussian in Equation (A1), it should not be
surprising that we have arrived at a Gaussian distribution after
performing this integration.
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