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Nonreciprocal electrical transport in linear systems with balanced gain and loss in the bulk
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We investigate electrical transport in a quantum wire of N sites connected to an equal number (Ni/2) of sources
and drains of charges in bulk. Each source and drain injects and extracts charges at the same rate, respectively.
We show that the linear-response electrical current is nonreciprocal in such a system when the arrangement of
sources and drains breaks the system’s parity. We prove that inelastic scattering is essential for nonreciprocity in
this system. For this, we invoke a master equation description of classical charge transport in a similar system.
The nonreciprocal current in quantum wire matches that in the classical model for Ni/N ∼ 1, generating a finite
scattering length much smaller than the length of the wire. The nonreciprocity in the quantum wire oscillates
with wire length when Ni/N � 1, and it can vanish at specific lengths.
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I. INTRODUCTION

Charge transport in matters has a long history, starting from
empirical law by Ohm in the early days to kinetic equation de-
scription by Drude to recent fully quantum transport analysis
pioneered by Landauer and Büttiker [1–3]. Even today, elec-
trical transport is one of the most important research topics for
practical applications and basic understanding [4–14]. Here,
we revisit an intriguing problem of charge transport in an open
one-dimensional (1D) system, which is connected to the alter-
native sources (S’s) and drains (D’s) of charges in the middle.
These sources and drains lead to the gain and loss of particles
and energies in the system. The role of balanced gain and
loss of particles or energies has been extensively investigated
in recent years in the context of an effective parity-time PT
symmetry in classical and quantum systems [15–22]. We ex-
amine the role of balanced injection and extraction of particles
from a wire in classical and quantum transport regimes. Mo-
tivated by recent efforts to explore transport in effective PT
symmetric Hamiltonian systems [18,19,21,22], we formulate
a statistical description of transport in linear systems with
balanced gain and loss of particles or charges in bulk. In con-
trast to most studies in effective PT symmetric Hamiltonian
systems, our work does not require any untested assump-
tions in describing transport (e.g., use of a non-Hermitian
effective Hamiltonian in the dynamical evolution applying the
Schrödinger or Heisenberg equations). Further, our statistical
modeling of such an open quantum electrical system shows
the explicit presence of quantum noises [23,24], which lacks
in an effective closed system description. While directional
transport has been demonstrated in effective PT symmet-
ric models only in the nonlinear regime [21,22], our study
shows the presence of balanced gain and loss can lead to
nonreciprocal transport in the linear-response regime [24].
This phenomenon can be explained within both quantum and
classical descriptions, even without the magnetic fields.

Let us consider a wire of length L and resistance R, which
is biased by voltage V at the boundaries as shown in the inset
of Fig. 1(a). The wire is further connected to a current S and
a D at L/3 distance from the left and the right boundary,

respectively. The S (D) injects (draws) an electric current Ig

in (from) the wire. The electric current flowing in (Iin) and
out (Iout) at the boundaries of the wire can be calculated
easily following the Ohm’s or Kirchhoff’s circuit law, and
it is Iin = Iout = (V/R − Ig/3) for a forward bias (V > 0).
The current values change to (V/R + Ig/3) for a reverse bias
(V < 0). Thus, the charge transport through the wire in the
presence of balanced gain and loss of charges from the S and
D is nonreciprocal. The presence of S and D breaks the parity
of the wire, which leads to the nonreciprocity in the current
response. The role of breaking parity becomes more evident
when we consider more than one pair of S and D within the
circuit, e.g., we take two pairs of S and D connected to the
wire as depicted in Figs. 1(b) and 1(c). The S-D configuration
in Fig. 1(b) maintains the parity of the wire, but the parity
is broken in Fig. 1(c). Here, the resistance in each segment
between two consecutive connection points is R/5. Therefore,
the electric current flowing into the circuit is Iin = V/R in
the former [Fig. 1(b)], and Iin = (V/R − 2Ig/5) in the latter
[Fig. 1(c)]. Reversing the voltage bias across the circuits gives
nonreciprocal transport only for the configuration in Fig. 1(c),
where the parity is broken. Nevertheless, it is not clear what
the physical mechanism/origin of the current nonreciprocity
is. We seek to understand the mechanism in classical and
quantum transport processes. We particularly reveal that the
nonreciprocity in linear-response transport emerges for a fi-
nite rate of gain and loss in such systems in the presence of
inelastic scattering and parity-breaking due to the sources and
drains.

FIG. 1. Three resistive circuits where the arrangement of cur-
rent sources (blue arrow) and drains (red arrow) in panels (a) and
(c) breaks the parity of the wire, but retains in panel (b).
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II. MASTER EQUATION DESCRIPTION

We first invoke a master equation description (inspired by
the Drude model) of charge (e) transport with two species
of right- and left-moving charges [25]. Consider a 1D lattice
model with N sites and lattice spacing a. We take Ni/2 ≡
(N/2 − 1) dimers of a pair of S and D connected to the
bulk sites of the lattice. Each such S (D) is again injecting
(extracting) Ig charge current in (from) the system. We take
ρ±(x) as the density of the right- and left-movers at position
x on the lattice. In bulk, these right- and left-movers hop with
probability p to the next site in the right and left direction,
respectively. They can also convert between themselves with
a finite probability (1 − p) at the connection points of the
sources and drains with the lattice. In addition, the presence of
S (D) current Ig at position x increases (reduces) the density of
the left- and the right-movers by an amount of Igτ/(2ea). Such
random motion of left- and right-movers with interconversion
leads to the telegrapher’s equation in the absence of S’s and
D’s [25–28]. To generate a bias across the system similar to
the voltage difference, we connect the two ends of the lattice
to two reservoirs. Thus, we set the density of particles inside
the reservoirs as ρ±(x = 0) = ρ0 + δρ at the left terminal,
and ρ±(x = (N + 1)a) = ρ0 at the right terminal for a for-
ward bias. For the reverse biasing, we switch the densities
at two terminals. We then write discrete time-evolution equa-
tion for the density fields ρ±(x, t ) in time steps τ as

ρ+(a, t + τ ) − ρ+(a, t ) = ρ+(0, t ) − ρ+(a, t ), (1)

ρ−(a, t + τ ) − ρ−(a, t ) = pρ−(2a, t ) − ρ−(a, t ), (2)

ρ±(x, t + τ ) − ρ±(x, t ) = p[ρ±(x ∓ a, t ) − ρ±(x, t )]

− p − 1

2
[(1 ± 1)δx,2a + (1 ∓ 1)δx,(N−1)a]ρ±(x ∓ a, t )

+ (1 − p)[ρ∓(x, t ) − ρ±(x, t )] + (−1)
x
a

Igτ

2ea
, (3)

ρ+(Na, t + τ ) − ρ+(Na, t ) = pρ+(L, t ) − ρ+(Na, t ), (4)

ρ−(Na, t + τ ) − ρ−(Na, t )=ρ−(L + 2a, t ) − ρ−(Na, t ),
(5)

where x ∈ [2a, L], L = (N − 1)a and δx,x′ is the Kronecker-δ
symbol. We set the left-hand side of Eqs. (1)–(5) to zero in the
steady state of the system at long times. We immediately find
ρ+(a, t ) = ρ0 + δρ and ρ−(L + a, t ) = ρ0 for all time. We
can define the steady-state charge current flowing through the
two ends of the lattice by applying the continuity equations.
The currents flowing in and out of the lattice are given by Iin =
(ea/τ )(ρ+(a, t ) − pρ−(2a, t )) and Iout = (ea/τ )(pρ+(L) −
ρ−(L + a)), respectively (see Appendix A 1). For N = 4, we
find ρ±(x) by solving Eqs. (1)–(5), which gives

Iin = Iout = (ea/τ )δρ − (1 − p)Ig

3 − 2p
. (6)

These current values change to ((ea/τ )δρ + (1 − p)Ig)/(3 −
2p) for the reverse bias. Thus, Iin matches with the previ-
ous result of the circuit model in the limit p → 0, when we
identify group velocity vF = a/τ and evF δρ/3 = V/R. The
limit p → 0 signals a large interconversion between left- and

right-movers at each connection between S or D and the
lattice. The above nonreciprocity in current flow disappears
in the opposite limit of p → 1 for such a short lattice with
only one pair of S and D. Thus, the conversion between two
species of charge carriers is the physical origin of nonrecip-
rocal transport in this system in the presence of S and D. The
interconversion is equivalent to inelastic scattering of charge
carriers as energy is not conserved in these processes and leads
to resistance in such classical transport channel.

We next take an extended lattice with a large number
(Ni 	 2) of S and D. We now solve a large set of linear
coupled equations for ρ±(x) at the steady state of the lat-
tice with the boundary conditions of ρ+(a, t ) = ρ0 + δρ and
ρ−(L + a, t ) = ρ0. These solutions for densities of both the
species at odd and even sites are (see Appendix A 3)

ρ−(x) = ρ̃ − (2p − 1)Ig/(2evF )

p(1 + (N − 2)(1 − p))
, x = 3a, 5a, . . . , L,

ρ−(x) = ρ̃ + N (1 − p)Ig/(2evF )

p(1 + (N − 2)(1 − p))
, x = 2a, 4a, . . . , L − a,

ρ+(x) = ρ−(x) + δρ + Ig/(2evF )

1 + (N − 2)(1 − p)
, x = 2a, 3a, . . . , L,

ρ̃ = ρ0+
[

(N−2)ρ0+Nδρ − x

a

(
δρ + Ig

2evF

)]
(1 − p).

(7)

We insert these densities in the definition of Iin and Iout to
find the steady-state charge current at the boundaries as (check
Appendix A 3)

Iin = Iout = evF δρ − (1 − p)(N/2 − 1)Ig

1 + (N − 2)(1 − p)
. (8)

When the densities of the species at the two terminals are
reversed, the value of Iin and Iout is not the same as before for
a nonzero Ig as long as 1 − p > 0. Hence, we reaffirm that we
need a finite interconversion of species to get nonreciprocity.
We further define a length scale lc = a/(1 − p), which we
later identify as the scattering length that emerged due to the
interconversion of species. Then, we can rewrite Eq. (8) as

Iin = Iout = evF δρ

1 + L/lc
− Ig

2

(
1 − 1

1 + L/lc

)
, (9)

where we assume (N − 2)a ≈ L for N 	 2. Thus, we find the
emergence of a finite lc is an essential entity for nonreciprocity
as nonreciprocity vanishes for lc → ∞. Till now, we have
discussed transport in classical channels without quantum co-
herence. It is also exciting how quantum coherence competes
with nonreciprocity. For this, we now turn to charge transport
in quantum channels.

III. QUANTUM LANGEVIN EQUATION APPROACH

A full-fledged quantum transport analysis generalizing ap-
proach of Landauer and Büttiker [1–3] requires quantum
transport channel(s) connected to baths at the boundaries gen-
erating a voltage bias [25,29–32]. We consider a finite-length
tight-binding (TB) wire of spinless fermions connected to two
microscopic bath models at two ends. The baths are kept at
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(a) (b) (c)

FIG. 2. (a) Schematic of an open quantum wire (yellow dots) connected to multiple sources (S’s) and drains (D’s) in the middle.
(b) Electrochemical potentials, μ2 and μ3, of S and D for a short quantum wire (N = 4) in the forward and reverse bias. Here μ̄/γo = 1.0,
γ /γo = 0.5 and we set the nonzero value of Ig as Ig/Io = 0.3. (c) Relative current nonreciprocity, �I/Ī with increasing Ig beyond linear response
regime of a short wire (N = 4, Ni = 2). Here, �I = |I1(δμ < 0)| − |I1(δμ > 0)|, 2Ī = |I1(δμ > 0)| + |I1(δμ < 0)|, and μ̄/γo = 1.52. In plots
(b-c), we fix δμ/γo = 0.1 and δμ/γo = −0.1 for forward and reverse bias, respectively, with e = 1.

different electrochemical potentials to create a voltage dif-
ference across the wire. We further model the sources and
drains as microscopic baths whose electrochemical potentials
are fixed self-consistently so that they inject or draw the
required current Ig to the transport channel [25,33–43]. The
electrochemical potentials of electrons can be perceived as
a mathematical alternative to using electron densities in our
master equation description. All the microscopic baths are
modeled as semi-infinite TB chains, and all the baths are kept
at the same temperature T for simplicity of the analytical
calculation.

The Hamiltonian of the full system, depicted in Fig. 2(a)
, consisting of the wire plus all the baths, is given by Ĥ =
Ĥw + ∑N

l=1(Ĥ l
B + V̂ l ), where (setting h̄ = 1)

Ĥw = −γo

N−1∑
l=1

(ĉ†
l ĉl+1 + ĉ†

l+1ĉl ), (10)

Ĥ l
B = −γo

∞∑
m=1

(b̂†
m(l )b̂m+1(l ) + b̂†

m+1(l )b̂m(l )), (11)

V̂ l = −γl (b̂
†
1(l )ĉl + ĉ†

l b̂1(l )). (12)

Here, Ĥw describes a 1D quantum wire of N sites. The op-
erator ĉ†

l (ĉl ) creates (annihilates) a spinless fermion at site
l , and it can hop to two neighboring sites with an amplitude
γo. Ĥ l

B denotes the Hamiltonian of the bath connected to
site l of the wire. Here, b̂†

m(l ) (b̂m(l )) creates (annihilates)
a spinless fermion at site m inside a bath. We set the hop-
ping amplitude within each TB bath also γo. The coupling
Hamiltonian between lth site of the wire and a bath is V̂ l ,
and γl is the related coupling amplitude. The electrochemical
potential of the left and right bath connected to site l = 1, N ,
respectively, are fixed to be μL and μR. The average and the
difference of the left and right bath’s electrochemical poten-
tials are μ̄ = (μL + μR)/2 and δμ = μL − μR, respectively.
The electrochemical potential {μl |l = 2, 3, ..., N − 1} of the
middle baths are determined self-consistently to get Ig current
injected (drawn) by the S (D) bath at an even (odd) site in
the bulk of the wire. The self-consistency condition, required
for the balance of the average S and D currents, does not fix
the phase and energy of individual electrons exchanged with
the baths. As a result, the side reservoirs effectively emulate
the essence of inelastic scatterers within the wire. We further
set γl = γ for l = 2, .., N − 1 and γo = 1, allowing all the

coupling and hopping amplitudes to be chosen in the units
of γo.

Let us assume that the baths are connected to the wire
in the remote past to → −∞. Following the method in
Refs. [25,31,32], we get generalized quantum Langevin equa-
tions for the wire operators for site l = 1, 2, 3 . . . , N as (see
Appendix B)

i
∂ ĉl

∂t
= −(ĉl+1 + ĉl−1) +

∫ t

−∞
dτ �+

l (t − τ )ĉl (τ ) + η̂l (t ),

(13)

where the noise η̂l (t ) = −iγl
∑

m g+
1,m(l, t − to)b̂m(l, to) and

the self-energy correction �+
l (t ) = γ 2

l g+
1,1(l, t ) generate fluc-

tuation and dissipation in the wire due to its coupling with
the bath at lth site. The open boundary condition on the wire
gives ĉ0 = ĉN+1 = 0. The elements g+

m,m′ (l, t ) are obtained
using the single particle Green’s function operator of the bath
at lth site:

ĝ+(l, t ) = −iθ (t )e−iĤ l
B (1)t , (14)

where the corresponding single particle Hamiltonian of the
bath is denoted by Ĥ l

B(1) and θ (t ) represents the Heaviside
step function. When the wire attains a steady state at a long
time, we can write the steady-state solution of Eq. (13) in
the frequency domain [31] as ĉl (ω) = ∑N

l ′=1 G+
ll ′ (ω)η̂l ′ (ω),

where ĉl (ω), η̂l (ω) are the Fourier domain operators. The
retarded Green’s function elements G+

ll ′ (ω) of the wire are
(Appendix B 1)

G+
ll ′ (ω) = 〈ϕ|ĉl [ω − Ĥw(1) − �̂+(ω)]−1ĉ†

l ′ |ϕ〉, (15)

where Ĥw(1) is the single particle Hamiltonian of the wire
and |ϕ〉 represents the vacuum mode of the full system..
The elements of the operator �̂+(ω) contains frequency
domain self-energy corrections as �+

ll ′ (ω) = �+
l (ω)δll ′ . The

noise properties in the frequency domain are the following:
〈η̂l (ω)〉 = 0 and

〈η̂†
l (ω)η̂l ′ (ω

′)〉 = γ 2
l fl (ω)ρl (ω)δ(ω − ω′)δll ′ , (16)

where fl (ω) = 1/(e(ω−μl )/KBT + 1) is the Fermi distribution
function and ρl (ω) = √

4 − ω2/(2π ) is the local density of
states at the first site of the lth bath. The averaging is per-
formed over the grand-canonical distribution of the baths. We
apply the continuity equations to define two kinds of charge
currents in the system: (i) Il = ieγl〈ĉ†

l b̂1(l ) − b̂†
1(l )ĉl〉, which
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FIG. 3. (a) Electrochemical potential profile in a long quantum wire (N = 30) connected to Ni/2 = N/2 − 1 number of S-D dimers.
Parameters are μ̄/γo = 1.0, Ig/Io = 0.3, and γ /γo = 0.5. Black dots represents the corresponding analytical points. (b) Variation of current
nonreciprocity �I = |I1(δμ < 0)| − |I1(δμ > 0)|, with N in a long wire with Ni/2 = N/2 − 1 number of S-D dimers. Here, Ig/Io = 0.05, and
μ̄/γo = 1.0. The black dots represent the corresponding analytical points obtained using 2δIN in Eq. (21). (c) Periodic variation of current
nonreciprocity, � j with N in a quantum wire with only one S-D dimer (Ni = 2). Here, Ig/Io = 0.1, and μ̄/γo = 1.0. In all the plots (a)–(c), we
fix δμ/γo = ±0.1 and e = 1.

is the current flowing from the bath at lth site to that site of the
wire, and (ii) Jl = ie〈ĉ†

l+1ĉl − ĉ†
l ĉl+1〉 for l = 1, 2, ..., N − 1

denotes the current flowing from site l to site l + 1 inside
the wire. To perform analytical calculation, we additionally
assume a linear-response regime with small electrochemi-
cal potential biases about μ̄: δμ � μ̄ and δμl = μl − μ̄ �
μ̄ for l = 2, 3, ..., N − 1. This simplifies the average cur-
rent expressions in the steady state which are provided in
Appendix B 2. We find μl of the middle baths from the self-
consistency condition that Il = (−1)l Ig for l = 2, 3, . . . , N −
1. We further set γ1/γo = γN/γo = 1, which leads to transpar-
ent (reflection-less) contacts for the two ends of the wire [30].
We denote Io = eδμ/(2π ) as the corresponding reflection-less
ballistic current within the wire when γ = 0.

A. Short wire

We first consider the case with N = 4, where the wire
contains a single S-D dimer. The electrochemical potentials
of the middle baths are obtained as μ2 = μ̄ + �μ and μ3 =
μ̄ − �μ [Fig. 2(b)] (see Appendix B 3 for the derivation). By
expanding �μ in the powers of γ 2, we get

�μ = π Ig/(eγ 2) + πμ̄2Ig/(2e) + O(γ 2). (17)

Thus, Ig cannot be arbitrarily large for a small γ for the
system to be in a linear-response regime, e.g., �μ � δμ,
which restricts Ig � 2γ 2Io when γ /γo � 1. From Fig. 2(b),
we observe that μ2 and μ3 do not symmetrically interchange
their values when we reverse the bias across the wire. This
leads to nonreciprocity in electrical transport.

At long-time steady state of the wire, the charge current at
the left and right boundaries for a nonzero δμ are related as
I1 = −I4, which can be expressed as I1 = G4(δμ/e) − δI (see
Appendix B 3), where

G4 ≈ e2

2π
(1 − γ 2), δI ≈ γ 2(2 − μ̄2)

Ig

2
, (18)

for γ /γo � 1. Thus, the magnitude of I1 for the forward bias
(δμ > 0) is different from that for the reverse bias (δμ < 0)
when Ig �= 0. This leads to nonreciprocal charge transport
in the wire in the presence of a pair of source and drain,
as discussed earlier for the two previous models. The value

for the nonreciprocity once again becomes 2Ig/3 when γ 2 =
(μ̄2 − 1 +

√
5 − 2μ̄2 + μ̄4)/2 in the nonperturbative regime

(check Appendix B 3). The relative nonreciprocity in the lin-
ear response regime is given by 2eδI/(G4δμ), which grows
linearly with Ig. Interestingly, the relative nonreciprocity be-
haves differently at larger Ig in the nonlinear response regime
(see Appendix B 3) as shown in Fig. 2(c).

B. Long wire

Next, we discuss charge transport in a longer wire (N 	 4)
with (N/2 − 1) S-D dimers connected to the middle sites. For
γ < 1 and N 	 4, we self-consistently determine μl of the
S’s and D’s in the middle as (check Appendix B 4)

μl = μL − φ +
[

lc
2σ

+ (−1)l∇
]

eIg

2
− 2

φ

lc
(l − 2), (19)

φ = δμ + eIglc/(2σ )

2[1 + (N − 3)/lc]
, and ∇ = coth2 αR

2σ
, (20)

for l = 2, 3, ..., N − 1. Here, we define the scattering
length lc = 1/αR and the electrical conductivity σ =
e2 sin2 αI coth αR/(2π | sinh α|2). Further, αR and αI are, re-
spectively, the real and imaginary parts of the complex-valued
function α = loge [C + √

C2 − 1] with αR > 0 and 2C = μ̄ −
γ 2(μ̄ − i

√
4 − μ̄2)/2. We show μl over the wire sites l for

Ig �= 0 in Fig. 3(a), where we depict an excellent match be-
tween the analytical expression of μl [Eq. (19)] with exact
numerical results for a fixed N and γ . Due to local injection
and extraction of particles by the S and D, the charge current
Jl at an even and an odd site of the wire are not the same,
and we call them by JS and JD, respectively. Applying μl

from Eq. (19) in Jl , we find JD and JS for N 	 4 as JD =
GN (δμ/e) − δJ and JS = JD + Ig, where

GN = σ

lc + N − 3
, δJ = Ig

2

(
1 − lc

lc + N − 3

)
. (21)

We observe JD = I1 = −IN from the continuity equation at
steady state. Thus, the particle current at the left and right
junction between the wire and respective baths are JD. We fur-
ther observe that I1 or IN is again different for forward (δμ >

0) and reverse bias (δμ < 0). The value of nonreciprocity in
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charge current is 2δJ , which matches that obtained within the
master equation analysis. Coupling of S and D baths to all
middle sites of the wire generates inelastic scattering for the
charge carriers, which leads to loss of coherence and energy
dissipation (Joule heating in Appendix B 4). These scatterings
give rise to a large resistance in the wire against particle
transport, and the resistance itself depends on the length of
the wire. Thus, we find an emergent nonreciprocal Drude-type
transport in the quantum wire in the presence of S and D
baths to all middle sites. We can further relate the inelastic
scattering due to the S and D baths in quantum channels to
the interconversion of species in classical channels from the
similarities of Eq. (21) and Eq. (9), when we identify σ (δμ/e)
with evF δρ lc.

The emergence of lc due to the coupling of the wire with
middle baths leads to two regimes of quantum transport de-
pending on N and lc. When N 	 lc for a long wire with a
finite γ , we observe that δJ can be approximated as Ig/2,
which gives JD = GN (δμ/e) − Ig/2, JS = GN (δμ/e) + Ig/2
and the nonreciprocity 2δJ = Ig. On the contrary, when N �
lc, we get the nonreciprocity 2δJ ≈ γ 2(N − 3)Ig/2 by approx-
imating lc = α−1

R ≈ 2/γ 2, σ ≈ e2lc/(2π ) and ∇ ≈ π lc/e2 for
γ � 1. In Fig. 3(b), we display two different regimes of non-
reciprocity by plotting 2δJ with N . It shows a linear growth
of 2δJ with N for shorter N (� lc) and saturation to Ig at
longer N .

C. Quantum coherence

The coherence in charge transport through the long quan-
tum wire is severely suppressed when all middle sites of the
long wire are connected to S and D baths. However, it plays
a vital role in transport when we connect some or only two
middle sites to the S and D baths. Next, we analyze how
coherence controls nonreciprocity in a quantum wire. We take
a quantum wire with N sites, where an S and a D bath (e.g.,
Ni = 2) are connected to the sites l = 2 and N − 1, respec-
tively. All the (N − 4) middle sites for l = 3, 4, . . . , N − 2
are free and form ballistic channels for charge transport. The
wire is again under a finite bias δμ from the left and right
boundary. The electrochemical potential of S and D baths can
be derived from the requirement of Ig current injected in and
extracted from the wire in the steady state. Applying those
electrochemical potentials, we find the current I1, IN at the
boundaries, showing nonreciprocity under reversal of voltage
bias δμ. The nonreciprocity in charge current for this case
is given by � j = 2(� − 1)Ig/(1 + 2γ 2 + �), where (check
Appendix C 1)

� = |(2A C − 1) sin (N − 3)kF − A sin (N − 4)kF |2
sin2 kF

,

(22)

A = μ̄/2 + i
√

1 − μ̄2/4, and the Fermi momentum
kF = cos−1(μ̄/2), which gives Fermi wavelength λF =
2π/ cos−1(μ̄/2). We show � j with varying N in Fig. 3(c) for
μ̄ = 1 giving λF = 6. We observe � j oscillates with N for
different γ , displaying an interplay between quantum coher-
ence and nonreciprocity. Further, � j vanishes when the length
(N − 3) between S and D baths is an integer multiple of λF /2

FIG. 4. Quantum coherence in charge transport. The nonre-
ciprocity in electrical current goes to zero when the length (N − 3)
becomes integer (m) times λF /2.

as shown in Fig. 4. Then, the electrochemical potential of S
and D remains the same for both forward and reverse voltage
bias. Such oscillations and zeros of nonreciprocity do not
appear in a similar set-up within the master equation analysis
for classical transport channels (see Appendix C 2).

IV. CONCLUSIONS

The nonreciprocal transport mechanism in our models has
similarity to other magnet-free rectifications using an active
drive to break reciprocity, e.g., spatiotemporal modulations
[44]. While the internal characteristics of the wire with bal-
anced current S’s and D’s remain unaltered for both forward
and reverse bias (e.g., the resistive circuits in Fig. 1), the
electrochemical potentials of these S’s and D’s are required
to readjust for different bias to maintain a fixed Ig in our
quantum analysis. Such readjustment challenges the defining
feature of rectifiers or isolators. It also raises questions on
conditions for balanced gain and loss in many experiments
demonstrating nonreciprocity with effective PT symmetric
media, where no extra care is taken for such balanced gain and
loss for forward and reverse bias. Further, our analysis shows
two necessary requirements for nonreciprocity are: individual
breaking of parity and time-reversal symmetry in the models,
which are valid for other rectification mechanisms, including
the Faraday isolators [45] and nonlinear rectifiers [46]. Thus,
our results suggest that these systems with broken parity and
time-reversal symmetry show an arrow of space manifested
through nonreciprocal transport. Finally, it would be exciting
to extend our current analysis with balanced loss and gain
to topological wires, e.g., the Su–Schrieffer–Heeger (SSH)
chains [47,48] and the Majorana wires [10,11,32]. Another
extension can be to explore the role of long-range hopping and
the arrangement of these balanced losses and gains to enhance
the current nonreciprocity.

APPENDIX: SUMMARY OF APPENDICES

The Appendix is organized into four sections as follows.
Appendix A contains details of the master equation descrip-
tion for the charge transport in a lattice model. We derived the
expression for the incoming and the outgoing electrical cur-
rents using the charge continuity equation in Appendix A 1.
The steady-state solutions of the density fields of particles for
single and multiple S-D dimers are discussed in Appendix A 2
and Appendix A 3, respectively. We further provide a
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continuum limit description of the lattice model in the steady
states in Appendix A 4.

We provide the details of the charge transport through
a quantum wire using the quantum Langevin equation ap-
proach in Appendix B. The steady-state solutions, noise
properties and electrical current expressions are discussed in
Appendix B 1 and Appendix B 2. The derivation of the analyt-
ical expressions for the charge currents for single and multiple
S-D dimers are given in Appendix B 3 and Appendix B 4,
respectively. Further, we discuss the competition between the
coherence effect and the nonreciprocity in the wire due to
imperfect contacts in Appendix B 5.

Appendix C contains details of charge transport in an
extended wire (or a lattice) with one S and one D. In Ap-
pendix C 1, we provide detailed calculations for the derivation
of electrochemical potentials of the S-D reservoirs and charge
currents, which is presented in Sec. III C. In Appendix C 2,
we provide a similar set-up in a classical transport channel
and discuss the nonreciprocal transport using the master equa-
tion description.

Finally, in Appendix D, we discuss nonreciprocal charge
transport in a resistive circuit model with multiple S-D
dimers.

APPENDIX A: MASTER EQUATION DESCRIPTION FOR
CHARGE TRANSPORT IN A 1D LATTICE

In this section, we give details of the master equation de-
scription described in Sec. II of the main text to study charge
transport in a 1D lattice coupled to Ni/2 = N/2 − 1 pairs of Ss
and Ds. The length of the lattice is denoted by L = (N − 1)a.
Using Eqs. (1)–(5) in the main text, we write the following
steady-state equations for the density fields of the right- and
left-moving particles:

ρ+(a) = ρ+(0), ρ−(a) = pρ−(2a), (A1)

[p − (p − 1)δx,2a]ρ+(x − a) − pρ+(x) + (1 − p)

× [ρ−(x) − ρ+(x)] + (−1)
x
a

Ig

2evF
= 0, (A2)

[p − (p − 1)δx,(N−1)a]ρ−(x + a) − pρ−(x) + (1 − p)

× [ρ+(x) − ρ−(x)] + (−1)
x
a

Ig

2evF
= 0, (A3)

pρ+(L) = ρ+(L + a), ρ−(L + a) = ρ−(L + 2a), (A4)

where x ∈ [2a, L], and we denote vF = a/τ as the group
velocity of the mobile charges. The boundary condi-
tions for the above equations are mentioned earlier before
Eq. (1).

1. Boundary and bulk currents

Here, we derive various current formulas using the continu-
ity equations for the charge densities. The total charge density,
at any location x (and time t) is e[ρ+(x, t ) + ρ−(x, t )]. We
first focus on the left boundary of the lattice. Utilizing the

master equations in Eqs. (1)–(5), we get

e
∂

∂t
[ρ+(a, t ) + ρ−(a, t )] = evF

[
ρ+(0, t ) − ρ−(a, t )

a

]

− evF

[
ρ+(a, t ) − pρ−(2a, t )

a

]
,

(A5)

where we use ∂
∂t ρ

±(x, t ) ≡ [ρ±(x, t + τ ) − ρ±(x, t )]/τ .
Now, we can identify the charge current flowing into
the lattice as follows: Iin = evF [ρ+(a, t ) − pρ−(2a, t )].
Similarly, at the right boundary, we get

e
∂

∂t
[ρ+(L + a, t ) + ρ−(L + a, t )]

= evF

[
pρ+(L, t )

a
− ρ−(L + a, t )

a

]

− evF

[
ρ+(L + a, t ) − ρ−(L + 2a, t )

a

]
. (A6)

Thus, the charge current flowing out of the lattice is defined
using Iout := evF [pρ+(L, t ) − ρ−(L + a, t )]. Next, we obtain
the continuity equation for the other sites x ∈ {3a, 4a, ..., L −
a} in the bulk:

e
∂

∂t
[ρ+(x, t ) + ρ−(x, t )] = epvF

ρ+(x − a, t ) − ρ−(x, t )

a

− epvF
ρ+(x, t ) − ρ−(x + a, t )

a
+ (−1)

x
a

Ig

a
. (A7)

This gives the current flowing inside the lattice from site x
to x + a as J (x) := epvF [ρ+(x, t ) − ρ−(x + a, t )]. For odd
(even) sites x, J (x) gives the interbond (intrabond) current
within the lattice.

2. Single S-D dimer

Let us first consider the case of N = 4, with a single pair
of S and D coupled at sites x = 2a and x = 3a, respectively.
The linear set of equations in Eqs. (A1)–(A4) can be inverted
easily, and we obtain the following solutions (p �= 0) for the
density fields in the steady state:

ρ−(a) = 2(1 − p)
[ Ig

2evF
+ δρ

]
3 − 2p

+ ρo, (A8)

ρ+(2a) = (2 − p)
[ Ig

2evF
+ δρ

] + (3 − 2p)ρo

p(3 − 2p)
, (A9)

ρ−(2a) = ρo + 2(1 − p)
[ Ig

2evF
+ δρ + ρo

]
p(3 − 2p)

, (A10)

ρ+(3a) = (p − 1) Ig

evF
+ δρ + (3 − 2p)ρo

p(3 − 2p)
, (A11)

ρ−(3a) = (p − 2) Ig

2evF
+ (1 − p)δρ + (3 − 2p)ρo

p(3 − 2p)
, (A12)

ρ+(4a) = (p − 1) Ig

evF
+ δρ + (3 − 2p)ρo

3 − 2p
. (A13)
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Therefore, the current flowing in (out of) the lattice is

Iin = Iout = evF δρ − (1 − p)Ig

3 − 2p
, (A14)

which is given in Sec. II of the main text, and the current
between the S-D bond is

J (2a) = evF δρ + (2 − p)Ig

3 − 2p
. (A15)

The above solutions suggest that the density field at the middle
sites diverges as 1/p if we take p → 0 (large interconversion).
However, the middle current J (2a) in the limit p → 0 remains
finite, since J (2a) ∝ p[ρ+(2a) − ρ−(3a)].

3. Multiple S-D dimers in a long lattice

Next, we follow an iterative procedure to find the density
profile in an extended lattice (N > 4). At the odd sites x =
3a, 5a, . . . , (N − 1)a in the middle of the lattice, we get

ρ−(x) =

ρ0 + [
(N − 2)ρ0 + Nδρ − x

a

(
δρ

+ Ig

2evF

)]
(1 − p) − (2p − 1) Ig

2evF

p[1 + (N − 2)(1 − p)]
, (A16)

ρ+(x) =

ρ0 + [
(N − 2)ρ0 + Nδρ − x

a

(
δρ

+ Ig

2evF

)]
(1 − p) + pδρ + (1 − p) Ig

2evF

p[1 + (N − 2)(1 − p)]
. (A17)

Similarly, at the even sites x = 2a, 4a, . . . , (N − 2)a, we get

ρ−(x) =

ρ0 + [
(N − 2)ρ0 + Nδρ − x

a

(
δρ

+ Ig

2evF

)]
(1 − p) + N (1 − p) Ig

2evF

p[1 + (N − 2)(1 − p)]
, (A18)

ρ+(x) =

ρ0 + [
(N − 2)ρ0 + Nδρ − x

a

(
δρ

+ Ig

2evF

)]
(1 − p) + pδρ + [N − (N − 1)p] Ig

2evF

p[1 + (N − 2)(1 − p)]
.

(A19)

The above expressions exclude solutions at the boundaries of
the lattice, and they are given by

ρ−(a) = (N − 2)(1 − p)
[
δρ + Ig

2evF

]
1 + (N − 2)(1 − p)

+ ρo, (A20)

ρ+(L + a) = (ρo + δρ) + (N − 2)(1 − p)
[
ρo − Ig

2evF

]
1 + (N − 2)(1 − p)

.

(A21)

Utilizing the above density fields, we obtain the intrabond
currents in the lattice as follows:

J (x) = evF δρ + Ig/2

1 + (N − 2)(1 − p)
+ Ig

2
, (A22)

where x = 2a, 4a, ..., (N − 2)a. The interbond currents in the
lattice are obtained as J (x) = evF δρ−(1−p)(N/2−1)Ig

1+(N−2)(1−p) = Iin = Iout,
where x = 3a, 5a, ..., (N − 3)a, which are the currents in
Eq. (8).

4. Multiple S-D dimers in the continuous limit

We now consider the continuum limit (a → 0) of the ex-
tended lattice model with multiple S-D dimers. We take a

large number of dimers (Ni/2 	 1) and use a bipartite lattice
description to make further progress. We introduce Xe = 2ma
for m = 1, .., N/2, and Xo = (2m − 1)a for m = 1, .., N/2 to
denote the positions of even and odd sites, respectively. Our
goal is to rewrite Eqs. (B1)–(B4) with the help of the redefined
coordinates, Xe and Xo. To facilitate such a treatment, we
consider the limit p → 1 on all the hopping probabilities, but
retain a finite conversion rate lim[(1 − p)/τ ] �= 0 at all the
middle sites of the lattice where the S and D are coupled. With
these assumptions, the steady-state equations at the middle
sites become:

ρ±(Xe ∓ a) = ρ±(Xe) ± a

lc
[ρ+(Xe) − ρ−(Xe)] − Ig

2evF
,

(A23)

ρ±(Xo ∓ a) = ρ±(Xo) ± a

lc
[ρ+(Xo) − ρ−(Xo)] + Ig

2evF
,

(A24)

where Xe ∈ {2a, 4a, ..., L − a}, and Xo ∈ {3a, 5a, ..., L}.
Here, lc = a/(1 − p) denotes the scattering length scale in
the problem. We aim to decouple the equations for the density
fields on the even sublattice from those on the odd sublattice.
The resulting recurrence equations will no longer contain
the inhomogeneous driving term Ig, and we can take the
continuum limit a → 0 (along with τ → 0) to describe the
density field of the particles on separate sublattices. Here,
Ig enters the description through the modified boundary
conditions, as we see in the following discussions.

a. Equation for ρ+(Xo).

Utilizing the above equations on the even sublattice, we get

ρ+(Xe) − ρ−(Xe) = ρ+(Xe − a) − ρ−(Xe + a)

1 + 2(a/lc)
, (A25)

where Xe = 2a, 4a, ..., L − a. We focus on the steady-state
equations for the right-moving charges at the odd sites. If Xo

is an odd site, then (Xo − a) will be positioned on the even
sublattice. With the help of Eq. (A25), the equations at even
sites Xe = Xo − a for the right-moving particles become

ρ+(Xo − a) = ρ+(Xo − 2a) − a

2a + lc
[ρ+(Xo − 2a)

− ρ−(Xo)] + Ig

2evF
, for Xo = 3a, 5a, ..., L.

(A26)

By substituting the above expression for ρ+(Xo − a) into
Eq. (A24), the inhomogeneous term Ig/(2evF ) cancels out and
we arrive at the relations

ρ+(Xo − δXo) − ρ+(Xo) − a[ρ+(Xo − δXe) − ρ−(Xo)]

2a + lc

− a

lc
[ρ+(Xo) − ρ−(Xo)] = 0, Xo = 3a, 5a, ..., L. (A27)

In the above recurrence equation, the density fields on the odd
sublattice are decoupled from those on the even sublattice.
Here, δXo = 2a represents the lattice constant of the odd sub-
lattice. We divide both sides of Eq. (A27) by δXo and assume
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the continuum limit a → 0. This leads to the following first-
order differential equation:

∂ρ+(Xo)

∂Xo
+ 1

lc
[ρ+(Xo) − ρ−(Xo)] = 0. (A28)

The variable Xe now assumes continuous values within the
interval (0, L], and the boundary condition for the equation is
fixed by ρ+(Xo = 0+) = ρo + δρ. Next, we derive a similar
equation for the left-moving particles.

b. Equation for ρ−(Xo).

Following the method of the previous paragraph, we now
use Xe = Xo + a and rewrite Eq. (B23) for the left-moving
particles as follows:

ρ−(Xo + a) = ρ−(Xo + 2a) + a

2a + lc
[ρ+(Xo)

− ρ−(Xo + 2a)] + Ig

2evF
, for

Xo = a, 3a, ..., L − 2a. (A29)

Substituting this expression into Eq. (B24) gives the following
decoupled equations :

ρ−(Xo + δXo) − ρ−(Xo) + a[ρ+(Xo) − ρ−(Xo + δXo)]

2a + lc

+ a

lc
[ρ+(Xo) − ρ−(Xo)] = 0, Xo = 3a, ..., L − 2a.

(A30)

The boundary value for the above recurrence relations is fixed
at the rightmost site on the even sublattice, i.e., Xo = L. Using
the steady-state equation at x = L, we get

ρ−(L) = ρ−(L + a) − Ig

2evF
+ (1 − p)ρ+(L)

= ρo − Ig

2evF
+ a

[
ρ+(L)

lc

]

= ρo − Ig

2evF
+ O(a), (A31)

where the last term in the above expression is of the order of
a. We divide both sides of Eq. (B30) by δXo and take the limit
a → 0. This yields

∂ρ−(Xo)

∂Xo
+ 1

lc
[ρ+(Xo) − ρ−(Xo)] = 0. (A32)

Once again, Xo in the above equation is a continuous pa-
rameter within the interval (0, L] and the boundary value
for Eq. (B32) becomes ρ−(Xo = L) ≈ ρo − Ig/(2evF ), after
neglecting all the terms in ρ−(Xo = L) that are of the order of
a.

c. Equation for ρ±(Xe).

One can check that the recurrence equations for the density
field of the right-moving particles at even sites take the same
form as Eq. (B27), where Xo is replaced by Xe = 4a, 6a..., L −
a and δXo is replaced by δXe = 2a. Here, the boundary value is
fixed at the left-most site of the even sublattice, i.e., Xe = 2a,

which is given by the following relation:

ρ+(2a) = ρ+(a) + Ig

2evF
+ (1 − p)ρ−(2a)

= ρo + δρ + Ig

2evF
+ O(a). (A33)

In a similar fashion, we find that ρ−(Xe) at odd sites satisfy
Eq. (A30), where we replace Xo by Xe = 2a, 4a, ..., L − a.
At the boundary Xe = L + a, we have ρ−(Xe = L + a) = ρo.
Now, Xe takes continuous values in the limit a → 0 and we
get

∂ρ+(Xe)

∂Xe
+ 1

lc
[ρ+(Xe) − ρ−(Xe)] = 0, Xe ∈ (0, L), (A34)

∂ρ−(Xe)

∂Xe
+ 1

lc
[ρ+(Xe) − ρ−(Xe)] = 0, Xe ∈ (0, L], (A35)

where the boundary conditions for the above equations are
ρ+(Xe = 0+) ≈ ρo + δρ + Ig/(2evF ) (after removing all
terms of O(a) from this expression), and ρ−(Xe = L + 0+) =
ρo, respectively.

The steady-state density solutions for the middle sites in
the lattice are as follows:

ρ+(Xo) = −C

lc
Xo + δρ + ρo, (A36)

ρ−(Xo) = C

lc
(L − Xo) + ρo − Ig

2evF
, (A37)

ρ+(Xe) = −C

lc
Xe + δρ + ρo + Ig

2evF
, (A38)

ρ−(Xe) = C

lc
(L − Xe) + ρo, (A39)

where C = [δρ + Ig/(2evF )]/(1 + L/lc). Now, the density
fields at the boundaries are obtained using the following re-
lations:

ρ−(Xo = a) = lim
p→1
a→0

pρ−(Xe = 2a) = ρo + C
L

lc
, (A40)

ρ+(Xe = L + a) = lim
p→1
a→0

pρ+(Xo = L) = δρ + ρo − C
L

lc
.

(A41)

We observe that lima→0[ρ−(Xo = a) − ρ−(Xo = 3a)] =
Ig/(2evF ), and lima→0[ρ+(Xe = L − a) − ρ+(Xe =
L + a)] = Ig/(2evF ). Therefore, the net density field suffers
a discontinuity of Ig/(2evF ) at the right (left) boundary of the
even (odd) sublattice. Using the full solutions, we derive the
total particle densities at the middle sites as follows:

ρ+(Xe) + ρ−(Xe) = 2(ρo + δρ) − 2δρ + Ig/(evF )

lc + L
Xe

− 2δρ − [Ig/(evF )](L/lc)

2(1 + L/lc)
+ Ig

2evF
,

(A42)

ρ+(Xo) + ρ−(Xo) = 2(ρo + δρ) − 2δρ + Ig/(evF )

lc + L
Xo

− 2δρ − [Ig/(evF )](L/lc)

2(1 + L/lc)
− Ig

2evF
.

(A43)
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The incoming and outgoing charge currents are

Iin = lim
p→1
a→0

evF [ρ+(Xo = a) − pρ−(Xe = 2a)]

= evF δρ

1 + L/lc
− Ig

2

{
1 − 1

1 + L/lc

}
= Iout, (A44)

which are given in Eq. (9). We use current probes for the S’s
and D’s in the master equation treatment and in the discussion
of the resistive circuit model (Sec. I and Appendix D). Next,
we discuss charge transport in the quantum regime using self-
consistent voltage probes for the S’s and D’s.

APPENDIX B: QUANTUM LANGEVIN EQUATION
APPROACH FOR CHARGE TRANSPORT IN

MICROSCOPIC MODEL

In this section, we provide details of the microscopic anal-
ysis of charge transport through a quantum channel (wire),
which is discussed in Sec. III. The wire contains N sites and
is connected to microscopic baths. The full system (the wire
and all the baths) is modeled by a microscopic Hamiltonian
Ĥ , given in the main text. Utilizing Ĥ , we get the following
Heisenberg equations for the operators (h̄ = 1) [25,31]:

∂ b̂1(l )

∂t
= i[b̂2(l ) + γl ĉl ], (B1)

∂ b̂m(l )

∂t
= i[b̂m+1(l ) + b̂m−1(l )] for m �= 1, (B2)

∂ ĉl

∂t
= i(ĉl−1 + ĉl+1) + iγl b̂1(l ) for l = 1, 2..., N, (B3)

where we have taken γo = 1. The open boundary condition on
the wire imposes ĉ0 = ĉN+1 = 0. To integrate out the bath’s
degrees of freedom, we use single particle retarded Green’s
function operator ĝ+(l, t ) = −iθ (t )e−iĤ l

B (1)t for each bath lo-
cated at l . The single particle Hamiltonian for the bath (with
γo = 1) is given by: Ĥ l

B(1) = −∑∞
m=1(|m〉ll〈m + 1| + H.c.),

where b̂†
m(l )|ϕ〉 = |m〉l . The matrix elements of an operator

ĝ+(l, t ) in the real-space basis are given by

g+
m,n(l, t ) = −iθ (t )

∫ π

0
dkψk (m)ψ∗

k (n)e−iωkt . (B4)

Here, the energy-momentum dispersion ωk = −2 cos k repre-
sents the single particle spectrum of Ĥ l

B. The corresponding
wave functions ψk (m) in a semi-infinite TB chain are given
by ψk (m) = √

2/π sin km, where k ∈ (0, π ). These wave
functions are used to define normal mode operators for
the lth bath: b̂†

k (l ) = ∑
m ψk (m)b̂†

m(l ), which diagonalizes
Ĥ l

B. Further, ψk (m) satisfies the following two relations
:
∑

m�1 ψk (m)ψ∗
k′ (m) = δ(k − k′), and

∫ π

0 dkψk (m)ψ∗
k (n) =

δmn. It is then easy to check that {b̂m(l ), b̂†
n(l ′)} = δmnδll ′ gives

{b̂k (l ), b̂†
k′ (l ′)} = δ(k − k′)δll ′ . Using Eqs. (B1) and (B2), we

obtain the following equation of motion for b̂k (l ):

∂ b̂k (l )

∂t
= −iωkb̂k (l ) + iγlψ

∗
k (1)ĉl . (B5)

Integrating the above equation from an initial time to to a later
time t , we get

b̂k (l, t ) = b̂k (l, to)eiωk (to−t ) + iγlψ
∗
k (1)

∫ t

to

dτ ĉl (τ )e−iωk (t−τ ),

b̂m(l, t ) = i
∑

n

g+
m,n(l, t − to)b̂n(l; to)

− γl

∫ t

to

dτg+
m,1(l, t − τ )ĉl (τ ), where t > to.

(B6)

In the previous line, we have used the relation b̂†
m(l, t ) =∫

dkψ∗
k (m)b̂†

k (l, t ). Next, we substitute the expression for
b̂1(l, t ) at a later time t into Eq. (B3). This will lead to
the generalized quantum Langevin equations for the wire’s
degrees of freedom:

∂ ĉl

∂t
= i(ĉl+1 + ĉl−1) − iη̂l (t )

− i
∫ t

to

dτ�+
l (t − τ )ĉl (τ ) for l = 1, 2..., N, (B7)

which is given in Eq. (13). We introduce the self-energy cor-
rection, �+

l (t ) in the time domain and the noise operator, η̂l (t )
as

η̂l (t ) = −i γl

∑
m

g+
1,m(l, t − to)b̂m(l, to) and

�+
l (t ) = γ 2

l g+
1,1(l, t ). (B8)

They both appear because of a finite coupling of the wire with
a bath located at site l .

1. Steady-state solutions and noise correlations

Next, we explore the charge transport through the wire in
the steady state (t → ∞). Let us assume that the wire was
connected to the baths in the remote past (to → −∞). This
simplifies the analysis by facilitating Fourier transformation
to the frequency domain. The Fourier transformations from
the time domain to the frequency domain for the operators
and complex numbers are

ĉl (ω) = 1

2π

∫ ∞

−∞
dteiωt ĉl (t ),

η̂l (ω) = 1

2π

∫ ∞

−∞
dteiωt η̂l (t ),

and �+
l (ω) = γ 2

l

∫ ∞

−∞
dteiωt g+

1,1(l, t ). (B9)

Using the inverse Fourier transformation of the above re-
lations, we transform the quantum Langevin equations in
Eq. (B7) into

ĉl−1(ω) + [ω − �+
l (ω)]ĉl (ω) + ĉl+1(ω) = η̂l (ω), (B10)

for l = 1, 2, ..., N . The above equations are linear in the oper-
ators ĉl (ω) with the noises appearing as inhomogeneous terms
on the right-hand side. Therefore, we can invert Eq. (B10)
to get the steady-state solutions in the frequency domain as
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follows:

ĉl (ω) =
N∑

l ′=1

G+
ll ′ (ω)η̂l ′ (ω) for l = 1, 2..., N, (B11)

where G+
ll ′ (ω) are the elements of (Ẑ−1). The elements of the

matrix Ẑ have the following form : Zll ′ (ω) = δl,l ′−1 + [ω −
�+

l (ω)]δl,l ′ + δl,l ′+1.
Following the definition in Eq. (C8), the noise in the wire

enters through the bath operators b̂m(l, to). A bath coupled to
the wire at site l was initialized in a thermal state, which is
characterized by the grand canonical ensemble with tempera-
ture T and electrochemical potential μl . Therefore, the normal
mode operators b̂†

k (l ), b̂k (l ) satisfy the following average rela-
tions: 〈b̂†

k (l, to)〉 = 0, 〈b̂k (l, to)〉 = 0 and 〈b̂†
k (l, to)b̂k′ (l ′, to)〉 =

fl (ωk )δ(k − k′)δl,l ′ . Here, fl (ω) represents the Fermi func-
tion, expressed as fl (ω) = [e(ω−μl )/KBT + 1]−1 and KB stands
for the Boltzmann constant. As a consequence of the above
relations, we immediately obtain 〈η̂l (t )〉 = 〈η̂†

l (t )〉 = 0. We
are interested in finding the average charge currents across
various bonds in the wire. This requires two-point correlations
in noise operators. The noise correlations arising from a bath
at site l , between any two times t and t ′, are given by

〈η̂†
l (t )η̂l (t

′)〉
= γ 2

l

∑
m,n

g+∗
1,m(l, t − to)g+

1,n(l; t ′ − to)〈b̂†
m(l, to)b̂n(l, to)〉

= γ 2
l

∑
m,n

g+∗
1,m(l, t − to)g+

1,n(l; t ′ − to)

×
∫ π

0
dkψ∗

k (m)ψk (n) fl (ωk )

= γ 2
l

∫ π

0
dk|ψk (1)|2 fl (ωk )e−iωk (t ′−t ). (B12)

Thus, the noises from the baths are colored. They arise due to
the finite bandwidth and nonlinear dispersion of the structured
TB baths. In the frequency domain, the noise correlations get
simplified to

〈η̂†
l (ω)η̂l (ω

′)〉 = 1

(2π )2

∫∫
dtdt ′e−iωt eiω′t ′ 〈η†

l (t )ηl (t
′)〉

= γ 2
l fl (ω)ρl (ω)δ(ω − ω′), (B13)

where ρl (ωk ) = |ψk (1)|2/|∂kωk| gives the density of states at
the first site of the lth bath. For a semi-infinite TB chain, we

get ρl (ωk ) =
√

4 − ω2
k/(2π ).

We now calculate the self-energy correction in the fre-
quency domain resulting from connecting a bath to the wire
at site l:

�+
l (ω) = γ 2

l

∫ ∞

−∞
dteiωt g+

1,1(l, t )

= − iγ 2
l

∫ ∞

−∞
dtθ (t ) l〈1|ei[ω−Ĥ l

B (1)]t |1〉l

= − iγ 2
l

∫ ∞

0
dt lim

ε→0+ l〈1|ei[ω−Ĥ l
B (1)+iε]t |1〉l

= γ 2
l lim

ε→0+ l〈1|[ω − Ĥ l
B(1) + iε]−1|1〉l

= γ 2
l

2
(ω − i

√
4 − ω2) = �l (ω) − i

�l (ω)

2
. (B14)

In Eq. (B14), we have separated the real and imaginary
parts of the self-energy �+

l (ω). The real part gives the
frequency-dependent energy shift on the wire’s onsite ener-
gies and is given by: �l (ω) = γ 2

l ω/2. The imaginary part
is always negative, and it introduces dissipation in the wire.
Using the expression for ρl (ω), we can rewrite �l (ω) =
2πγ 2

l ρl (ω). We can relate the noise correlations with the dis-
sipative component of the self-energy through the following
(fluctuation-dissipation) relation:

〈η†
l (ω)ηl (ω

′)〉 = �l (ω)

2π
fl (ω)δ(ω − ω′). (B15)

2. Charge currents in the steady state

We again apply a continuity equation to obtain various
currents in the system. Let us define the local particle density
at site l in the wire as nl = 〈ĉ†

l ĉl〉. We use the equations of
motion in Eqs. (B1)–(B3) to derive the time rate of change of
local charge density at site l:

∂ (enl )

∂t
= ieγl〈ĉ†

l b̂1(l ) − b̂†
1(l )ĉl〉 + ie〈ĉ†

l ĉl−1 − ĉ†
l−1ĉl〉

− ie〈ĉ†
l+1ĉl − ĉ†

l ĉl+1〉. (B16)

Using the above expression, we identify two kinds of charge
currents in the wire:

Jl = ie〈c†
l+1cl − c†

l cl+1〉, (B17)

Il = ieγl〈c†
l b1(l ) − b†

1(l )cl〉 = 2eγl Im〈b†
1(l )cl〉. (B18)

The current flowing through the wire from left to right across
the bond between the sites l and l + 1 is represented by Jl .
Similarly, the current entering the wire through the junction
between the first site of the lth bath and site l of the wire
is denoted by Il . In the steady state, we utilize the noise
correlations in the frequency domain to derive expressions for
Jl and Il . From Eq. (B17), we get

Jl = ie
∫∫

dωdω′ei(ω−ω′ )t 〈ĉ†
l+1(ω)ĉl (ω

′) − ĉ†
l (ω)ĉl+1(ω′)〉

= ie
∫

dω
∑

l ′
[G−

l ′l+1(ω)G+
ll ′ (ω) − G−

l ′l (ω)G+
l+1l ′ (ω)]

× γ 2
l ′ ρl ′ (ω) fl ′ (ω)

= e

2π

∫
dω

∑
l ′

Fll ′ (ω)[ fl (ω) − fl ′ (ω)]. (B19)

In the above equation, we introduce G−
l ′l (ω) ≡ G+∗

ll ′ (ω)
and Fll ′ (ω) = i[G−

l ′l (ω)G+
l+1l ′ (ω) − G−

l ′l+1(ω)G+
ll ′ (ω)]�l ′ (ω).

We also use
∑

l ′ Fll ′ (ω) = 0, which can be demonstrated us-
ing the following two relations:

i
N∑

l=1

G+
il (ω)�l (ω)G−

l j (ω) = G−
i j (ω) − G+

i j (ω), (B20)

Re[G+
ll ′ (ω)] = Re[G−

ll ′ (ω)]. (B21)
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We then simplify the expression for the current Il in Eq. (B18)
that flows in the wire from a bath located at site l:

Il = −2eIm
[ ∫∫

dωdω′ei(ω−ω′ )t 〈{η̂†
l (ω)

+�+∗
l (ω)ĉ†

l (ω)}ĉl (ω
′)〉

]

= −2eIm

[ ∫∫
dωdω′ei(ω−ω′ )t

{∑
j

G+
l j (ω)〈η̂†

l (ω)η̂ j (ω
′)〉

+ �+∗
l (ω)

∑
i, j

G+∗
li (ω)G+

l j (ω
′)〈η̂†

i (ω)η̂ j (ω
′)〉

}]

= −2e
∫

dω

{
Im[G+

ll (ω)]γ 2
l ρl (ω) fl (ω)

+ Im[�+∗
l (ω)]

∑
l ′

|G+
ll ′ (ω)|2γ 2

l ′ ρl ′ (ω) fl ′ (ω)

}

= − e

2π

∫
dω

{
−

∑
l ′

G+
ll ′ (ω)�l ′ (ω)G−

l ′l (ω) fl (ω)�l (ω)

+ �l (ω)
∑

l ′
|G+

ll ′ (ω)|2 fl ′ (ω)�l ′ (ω)

}

= e

2π

∑
l ′

∫
dωTll ′ (ω)[ fl (ω) − fl ′ (ω)]. (B22)

Here, we define the transmission coefficients between
two baths located at sites l and l ′ by Tll ′ (ω) =
|G+

ll ′ (ω)|2�l (ω)�l ′ (ω).
The current formulas in Eqs. (B19) and (B22) are ex-

pressed as integrals over all frequencies in the Fourier domain.
For analytical purposes, we can further simplify these expres-
sions. We give a detailed derivation for Il expanded in all
powers of δμl = μl − μ̄. Let us introduce the integration
variable z = β(ω − μ̄), where β is reciprocal of the tem-
perature T , i.e., β = (KBT )−1. We perform a Taylor series
expansion of fl (ω) about μl = μ̄. Then, the differences in the
Fermi functions can be written as follows:

fl (ω) − fl ′ (ω) =
∞∑

n�1

1

n!

∂n fl (ω)

∂μn
l

∣∣∣∣
μl =μ̄

(
δμn

l − δμn
l ′
)

=
∞∑

n�1

(−1)nβn

n!

∂n

∂zn
(1 + ez )−1

(
δμn

l − δμn
l ′
)
.

(B23)

Similarly, we carry out a series expansion for the transmission
coefficients Tll ′ (ω) about ω = μ̄ and write Eq. (B22) as

Il = e

2π

N∑
l ′=1

∞∑
n�1

∞∑
m=0

(−1)n

n!m!
βn−(m+1)Tll ′,m

× (
δμn

l − δμn
l ′
) ∫ ∞

−∞
dz zm ∂n

∂zn
(1 + ez )−1. (B24)

Here, we use the notation Tll ′,m = ∂m

∂ωm Tll ′ (ω)|ω=μ̄ . We choose
a temperature T � μ̄/KB, such that the terms in the series
containing βn−(m+1) for n < m + 1 can be neglected. Now, for
n � m + 1, the above integration (by repetitive integrations
by-parts) gives

∫ ∞

−∞
dz zm ∂n

∂zn
(1 + ez )−1 = δm,n−1(−1)n(n − 1)!, (B25)

where n! denotes the factorial value of an integer n. Therefore,
at temperatures T � μ̄/KB, the current Il due to the applied
electrochemical potential biases δμl can be written as

Il ≈ e

2π

N∑
l ′=1

∞∑
n�1

1

n!
Tll ′,n−1

(
δμn

l − δμn
l ′
)
. (B26)

Similarly, we can get

Jl ≈ e

2π

N∑
l ′=1

∞∑
n�1

1

n!
Fll ′,n−1

(
δμn

l − δμn
l ′
)
, (B27)

where Fll ′,m = ∂m

∂ωm Fll ′ (ω)|ω=μ̄ . We have used Tll ′,0 ≡ Tll ′ ,
and Fll ′,0 ≡ Fll ′ in the main text. In the linear response
regime, we truncate the series in Eqs. (B26) and (B27) after
n = 1.

3. One S-D dimer: Linear and nonlinear response regime

We consider N = 4, and a single S-D dimer (Ni/2 = 1).
The transmission coefficients Tll ′ are symmetric in l and l ′,
and we derive them fully analytically as follows:

T24 = T31 = 4γ 2

D(μ̄)
(1 − μ̄2/4), (B28)

T23 = 4γ 4

D(μ̄)
(1 − μ̄2/4), T14 = 4

D(μ̄)
(1 − μ̄2/4), (B29)

T21 = T34 = 4γ 2

D(μ̄)
(1 − μ̄2/4)[1 + γ 4 − γ 2(μ̄2 − 2)],

(B30)

where D(μ̄) = (2 + 2γ 2 + γ 4)2 − (1 + 2γ 2 + 5γ 4 +
2γ 6)μ̄2 + γ 4μ̄4. Using the S and D current constraints,
i.e., Il = (−1)l Ig for l = 2, 3 in the linear response regime,
we obtain two linear equations. They give the solutions
μ2 = μ̄ + �μ and μ3 = μ̄ − �μ, where

�μ = 2π (Ig/e) + (T34 − T13)(μL − μ̄)

T13 + T34 + 2T23

= πD(μ̄)Ig/e + γ 4(1 − μ̄2/4)(γ 2 + 2 − μ̄2)δμ

2γ 2(1 − μ̄2/4)(2 + γ 4 + 4γ 2 − γ 2μ̄2)
.

(B31)

The above expression leads to Eq. (17) once we expand it
in powers of γ . Further, a variation of μ2, μ3 with γ is shown
in Fig. 5. The current flowing in the wire from the left end is
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FIG. 5. Variation of electrochemical potentials μ2 and μ3 with γ

in the linear response regime of a short quantum wire (N = 4), where
μ̄/γo = 1, Ig/Io = 0.3, δμ/γo = 0.1, and e = 1.

I1 = G4(δμ/e) − δI , where

G4 = 2T34T13 + 2T23T14 + (T23 + T14)(T34 + T13)

2π (T13 + T34 + 2T23)

= e2 (4 − μ̄2)(2 + γ 4 + 2γ 2 − γ 2μ̄2)(γ 2 + 1)2

2πD(μ̄)(2 + γ 4 + 4γ 2 − γ 2μ̄2)
,

(B32)

δI = (T12 − T13)Ig

(T13 + T34 + 2T23)
= (γ 4 + 2γ 2 − γ 2μ̄2)

(2 + γ 4 + 4γ 2 − γ 2μ̄2)
Ig.

(B33)

The above equations give Eq. (18) in the main text. Equating
δI = Ig/3, we get only one real solution for γ , which is given
by

γ 2
c = μ̄2 − 1 +

√
(μ̄2 − 1)2 + 4

2
, (B34)

e.g., for μ̄ = 1, we get γc = 1, which is in the nonperturbative
regime of the wire-bath coupling.

Next, we consider the nonlinear current response. In the
series expansion of Il in Eq. (B26), we retain terms up to the
third order (n = 3) in δμl . This gives the following pair of
nonlinear S-D equations with δμ2 and δμ3 as the unknown
variables:

v′′

6
δμ3

2 − w′′

6
δμ3

3 + v′

2
δμ2

2 − w′

2
δμ2

3 + vδμ2 − wδμ3 = ξ2,

v′′

6
δμ3

3 − w′′

6
δμ3

2 + v′

2
δμ2

3 − w′

2
δμ2

2 + vδμ3 − wδμ2 = ξ3,

(B35)

ξl = (−1)l 2π Ig

e
+ δμ

2
(Tl1 − Tl4) + δμ2

8
(Tl1,1 + Tl4,1)

+ δμ3

48
(Tl1,2 − Tl4,2), (B36)

where v ≡ v(μ̄) = (T31 + T32 + T34), w ≡ w(μ̄) = T32; v′ =
∂μ̄v, v′′ = ∂2v

∂μ̄2 and similarly for w. Due to the coupled nonlin-
earity for δμ2 and δμ3 in Eq. (B35), we can get many pairs of
complex solutions. Out of these, only one real pair (μ(3)

2 , μ
(3)
3 )

is of physical relevance which coincides with the linear re-

FIG. 6. Numerical roots (μ(3)
2 , μ

(3)
3 ) of the nonlinear Eq. (B35).

The dotted black lines show the corresponding solutions obtained
within the linear response analysis. In the plot, we fix δμ/γo = 0.1
and e = 1.

sponse results in Eq. (B31) for δμ
(3)
2 , δμ

(3)
3 � δμ (Fig. 6).

We use this physical pair to compute the magnitude of the
incoming and outgoing current |I1| in the forward and reverse
bias. We show the corresponding relative nonreciprocity in
Fig. 2(c).

4. Linear response regime for the multiple dimers

Next, we focus on the multiple S-D baths in a longer
quantum wire (N 	 4). We restrict our calculations to the
linear response regime for analytical traceability and consider
a large number of S-D dimers with Ni = N − 2. Let us further
assume γ < 1, which gives lc > 1. The following parameters
σ, lc, α(= αR + iαI ) are introduced in the main text. We show
the following electrochemical potentials (Fig. 7 ) of the middle
baths fix the source and drain currents self-consistently at the
bulk sites, which are located far away from the boundaries:

μl = μL − φ +
[

lc
2σ

+ (−1)l∇
]

eIg

2
− 2φ

lc
(l − 2), (B37)

φ = δμ + eIglc/(2σ )

2[1 + (N − 3)/lc]
, and ∇ = coth2 αR

2σ
, (B38)

for l = 2, 3, ..., N − 1. First, we compute Il at an odd site l
in the bulk, such that 1 � l � N . Within the linear response
regime, we get

Il = e

2π

∑
l ′ �=1,N

Tll ′ (δμl − δμl ′ ) + e

2π
Tl1(δμl − δμL )

+ e

2π
TlN (δμl − δμR)

≈ e

2π

∑
l ′ �=1,N

Tll ′

[
− eIg

2
∇ − (−1)l ′ eIg

2
∇ − 2φ

lc
(l − l ′)

]

= −e2Ig

2π
∇

N−2∑
l ′=2,4,...

Tll ′ − 2φ

lc

e

2π

∑
l ′ �=1,N

Tll ′ (l − l ′). (B39)

The boundary terms in the above calculations are neglected
in comparison to the other terms since the corresponding
transmission coefficients are negligibly small for 1 � l � N .
Again, for all the points l, l ′ within the bulk of the wire, we
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FIG. 7. Electrochemical potential profile in a finite quantum wire with increasing size N : (a) N = 12, (b) N = 26, and (c) N = 100. The
blue dashed line shows the corresponding plot for Ig = 0, with γ �= 0. Here, Ig/Io = 0.3, μ̄/γo = 1.4, δμ/γo = 0.1, and e = 1.

get [25]

Tll ′ = π2γ 4ρl (μ̄)ρl ′ (μ̄)

| sinh α|2 e−2αR|l−l ′|, (B40)

in the limit N → ∞. In this limit, we can ideally get

lim
(N−l )→∞

lim
l→∞

∑
l ′ �=1,N

e−2αR|l−l ′ |(l − l ′) = 0, (B41)

lim
(N−l )→∞

lim
l→∞

N−2∑
l ′=2,4,...

e−2αR|l−l ′ | = 1

sinh 2αR
. (B42)

Therefore, at an odd site l in the bulk of the wire, we get

Il = −e2Ig

2π

π2γ 4ρ2
l (μ̄)

| sinh α|2
∇

sinh 2αR
= −Ig. (B43)

We have used σ = e2 sin2 αI coth αR/(2π | sinh α|2), and
ρl (μ̄) = 2 sin αI sinh αR/(πγ 2). Similarly, we can get Il = Ig

for all even points l in the bulk.
Let us calculate the interbond current, JD = Jl (l is odd)

within the wire. In the linear response regime,

JD = e

2π

∑
l ′ �=1,N

Fll ′ (δμl − δμl ′ ) + e

2π
Fl1(δμl − δμL )

+ e

2π
FlN (δμl − δμR)

≈ − e2Ig

2π
∇

N−2∑
l ′=2,4,...

Fll ′ − 2φ

lc

e

2π

∑
l ′ �=1,N

Fll ′ (l − l ′).

(B44)

Now, for all points l, l ′ within the bulk of the wire, we can get
[25]

Fll ′ = − πγ 2ρl (μ̄)

| sinh α|2 e−(|l+1−l ′ |+|l−l ′ |)αR

× sin (|l + 1 − l ′| − |l − l ′|)αI , (B45)

for N → ∞. Using the above relation, we evaluate the follow-
ing two summations:

lim
(N−l )→∞

lim
l→∞

∑
l ′ �=1,N

Fll ′ (l − l ′)

= −πγ 2ρl (μ̄)

| sinh α|2
cosh αR sin αI

2(sinh αR)2
= −2π

σ

e2
, (B46)

lim
(N−l )→∞

lim
l→∞

N−2∑
l ′=2,4,...

Fll ′ = πγ 2ρl (μ̄)

| sinh α|2
sin αI

2 cosh αR
. (B47)

Substituting the above expressions into Eq. (B44), we obtain
an expression for JD as follows:

JD = − e2Ig

2π
∇πγ 2ρl (μ̄)

| sinh α|2
sin αI

2 cosh αR
+ 2φσ

elc

= − Ig

2
+ σ (δμ/e) + Iglc/2

lc + (N − 3)
. (B48)

The charge continuity equation in the steady state further gives
JD = I1 = −IN . The above equation leads to Eq. (21). For the
intrabond currents, we choose l at even sites on the wire, i.e.,
JS = Jl (even l). This yields

JS = Ig

2
+ σ (δμ/e) + Iglc/2

lc + (N − 3)
, (B49)

which is similar to Eq. (A22) in Appendix A 3.
Next, we inspect the local thermal equilibrium at the mid-

dle sites of the wire. For that, we evaluate the deviation,
δnl , of the local particle density (at any point l) from its
corresponding equilibrium density. The local equilibrium den-
sity is obtained by imposing the condition: μl ′ = μl for all
l ′ ∈ {1, 2, ..., N}. We obtain the following expression for δnl

in the linear response regime:

δnl = γ 2ρl (ω)
N∑

l ′=1

∫
dω|G+

ll ′ (ω)|2[ fl ′ (ω) − fl (ω)]

= γ 2ρl (μ̄)
∑

l ′
|G+

ll ′ (μ̄)|2(μl ′ − μl ). (B50)

For all points within the bulk of the wire, G+
ll ′ (μ̄) =

(−1)|l−l ′ |e−|l−l ′ |α/(2 sinh α) for N → ∞. Then, evaluating the
above summation, we obtain

δnl = (−1)l+1 Ig

2eπγ 2ρl (μ̄)
. (B51)

We notice that δnl �= 0 as long as Ig �= 0, i.e., the current
driven nonequilibrium steady state does not provide local
thermal equilibrium within the bulk of the wire.
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Heat dissipation: The driven wire dissipates its energy in
the form of heat into the baths (Joule heating). We see how the
presence of driving currents Ig affects the heat dissipation. We
particularly look into the heat energy lost per site within the
bulk of the wire. For that, we need to calculate the heat current
flowing out of the wire from a site l into the bath coupled at
that site. It is defined as follows: hl = ul − μl (−Il ), where
ul = iγl〈(c†

l+1 + c†
l−1)b1(l ) − b†

1(l )(cl+1 + cl−1)〉 denotes the
corresponding flow of the energy current [25]. Like before, we
consider a temperature T � μ̄/KB and retain the first nonzero
terms in the series expansion of hl about μl = μ̄. In this
procedure, we get

hl = 1

4π

∑
l ′

Tll ′ (μl ′ − μl )
2 =

[
σ

(
2φ

elc

)2

+ ∇ I2
g

2

]
. (B52)

In the above expression, we use Eqs. (B41) and (B42) and the
following relation:

lim
(N−l )→∞

lim
l→∞

∑
l ′ �=1,N

e−2αR|l−l ′ |(l − l ′)2 = cosh αR

2(sinh αR)3
.

(B53)

We find the right-hand side of Eq. (B52) is equal to [JS(μl−1 −
μl ) + JD(μl − μl+1)]/2. The first term in Eq. (B52) falls as
1/N2 (for N 	 lc) as we increase the size of the wire (the
diffusive component). We further notice that the nonreciprocal
charge current affects only the first term in hl . The second term
in hl is N-independent. For a fixed δμ, such a term in hl causes
the overall heat dissipation in the wire to grow proportional to
N . This is not surprising since the uniform driving along the
wire will eventually cause more heating. For smaller values of
γ � 1, we get

hl ≈ 1

σ

[(
2φσ

elc

)2

+ l2
c

I2
g

4

]
, (B54)

where σ−1 ≈ 2π/(e2lc), and lc ≈ 2/γ 2.

5. Role of contact scattering on current nonreciprocity

Previously, we have chosen γ1/γo = γN/γo = 1 for the
analytical simplicity within the linear response regime. In
this subsection, we consider imperfect contacts between the
wire and the L, R-baths, i.e., γ1/γo = γN/γo �= 1. This induces
contact scattering at the boundaries, which influences the non-
reciprocal current transport through the wire.

We first take up a single S-D dimer (Ni/2 = 1). In Fig. 8,
we have shown that the nonreciprocity �I = |I1(δμ < 0)| −
|I1(δμ > 0)| value gradually decreases to zero with increasing
δγ , where δγ = γ1 − γo = γN − γo. Beyond this point, if we
further increase δγ , the current flowing in the forward bias
I1(δμ > 0) becomes more than that of flowing in the reverse
bias (inset of the Fig. 8). Next, we take Ni/2 = N/2 − 1 pairs
of S-D dimers in the wire. In Fig. 9, we display the variation
in �I with increasing N for different values of δγ . For a
sufficiently long wire, i.e., N 	 lc, we notice �I asymptot-
ically approaches Ig, irrespective of the value of δγ . In the
intermediate length scales (N � lc), �I is more for a given
N with smaller δγ . Based on this observation, we infer that
the introduction of contact scattering effectively enhances the
scattering length scale lc in the quantum wire. The interplay

FIG. 8. The variation of the current nonreciprocity with δγ in a
single S-D dimer. We fix δμ/γo = 0.1 and e = 1.

of quantum coherence becomes more prominent for fewer
S-D baths Ni ∼ 2. We notice the oscillatory rise of �I from
negative values in smaller wire sizes, which can further lead
to reciprocal charge transport (�I = 0) for a given N � 4.

APPENDIX C: INTERPLAY BETWEEN QUANTUM
COHERENCE AND NONRECIPROCAL CHARGE

TRANSPORT

In the previous section of the Appendix, we observe how
contact scattering can significantly affect the nonreciprocal
current behavior in a short quantum wire. In this section,
we study the special limit of a single S-D dimer in a long
wire, which can give reciprocal charge transport as dis-
cussed in Sec. III C. We couple one S and D bath to the
wire at sites l = 2, N − 1, respectively. Therefore, we have
γl = (δl,2 + δl,N−1)γ for l = 2, 3, ..., N − 1. Once again, we
fix the couplings at end contacts by γ1/γo = γN/γ = 1. In
Appendix C 1, we derive analytical expressions for the elec-
trochemical potentials of the S-D baths and the charge current
I1 in the wire. In Appendix C 2, we get the nonreciprocal
charge transport in a corresponding classical transport channel
within the master equation description.

FIG. 9. Nonreciprocity in the charge current vs N for different
values of δγ with multiple S-D dimers. Parameters of the plot are
μ̄/γo = 1.0, δμ/γo = 0.1, γ /γo = 0.3, Ig/Io = 0.05, and e = 1.
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1. Quantum Langevin equation approach in linear
response regime

The S-D currents give the following two equations, which
fix μ2 and μN−1 self-consistently:

2π (Ig/e) = (T21 + T2N−1 + T2N )δμ2

− T2N−1δμN−1 − (T21 − T2N )δμL, (C1)

−2π (Ig/e) = (T1N−1 + T2N−1 + TNN−1)δμN−1

− T2N−1δμ2 − (T1N−1 − TNN−1)δμL. (C2)

We use the following relations: Tll ′ = Tl ′l , T12 = TNN−1

and T1N−1 = T2N , which immediately give δμ2 = −δμN−1 =
�μ,N . From Eq. (C1), we obtain

�μ,N = 2π (Ig/e) + (T21 − T2N )δμ/2

T21 + 2T2N−1 + T2N
. (C3)

The current flowing in the wire can be written as

I1 = e
(T12 + T1N−1 + 2T1N )δμL − (T12 − T1N−1)�μ,N

2π
,

which yields I1 = G̃N (δμ/e) − � j/2, where

G̃N = e2

(T12 + 2T1N + T1N−1)(T21 + 2T2N−1
+ T2N ) − (T12 − T1N−1)(T21 − T2N )

4π (T21 + 2T2N−1 + T2N )
,

� j = 2
T12 − T1N−1

T21 + 2T2N−1 + T2N
Ig. (C4)

We only need to evaluate the following four transmission
coefficients: T21, TN−11, TN1, and TN−12. The retarded Green’s
function elements are given by

G+
ll ′ (μ̄) = (−1)l+l ′

|det(Ẑ )|
(
Cofact[Ẑ]

)
l ′l , (C5)

where Cofact[Ẑ] generates the cofactor of the matrix Ẑ . Ẑ
forms a tridiagonal matrix in real space basis as follows:

Zll ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 1 0 0 0 ... 0 0 0
1 2D 1 0 0 ... 0 0 0
0 1 μ̄ 1 0 ... 0 0 0
0 0 1 μ̄ 1 ... 0 0 0
... ... ... ... ... ... ... ... ...

0 0 0 0 0 ... μ̄ 1 0
0 0 0 0 0 ... 1 2D 1
0 0 0 0 0 ... 0 1 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.

(C6)

The determinant of the matrix Ẑ is given by

det(Ẑ ) = (2AD − 1){A(2DYN−4 − YN−5) − YN−4}
− A{A(2DYN−5 − YN−6) − YN−5}, (C7)

where A = μ̄/2 + i
√

1 − μ̄2/4, 2D = μ̄ − γ 2(μ̄ −
i
√

4 − μ̄2)/2, and YN = sin(N + 1)kF / sin kF . Here,
kF denotes the Fermi momentum and is defined via
kF = cos−1 (μ̄/2). After evaluating the co-factors, we get the
required Green’s function elements as follows:

G+
21(μ̄) = − 1

det(Ẑ )
{A(2DYN−4 − YN−5) − YN−4}, (C8)

G+
N1(μ̄) = (−1)N+1

det(Ẑ )
, G+

N−11(μ̄) = (−1)N

det(Ẑ )
A (C9)

G+
N−12(μ̄) = (−1)N+1

det(Ẑ )
A2. (C10)

The corresponding transmission coefficients are

T21 = γ 2 (4 − μ̄2)

|det(Ẑ )|2 �, TN−11 = γ 2 (4 − μ̄2)

|det(Ẑ )|2 , (C11)

TN1 = (4 − μ̄2)

|det(Ẑ )|2 , TN−12 = γ 4 (4 − μ̄2)

|det(Ẑ )|2 , (C12)

where � is an oscillating function of N , and de-
fined by the following relation � = |A(2D sin (N − 3)kF −
sin (N − 4)kF ) − sin (N − 3)kF |2/ sin2 kF . Utilizing these ex-
pressions, we finally get �μ,N , G̃N and � j as follows:

�μ,N = 2π |det(Ẑ )|2Ig/[e(4 − μ̄2)γ 2] + (� − 1)δμ/2

� + 1 + 2γ 2
,

G̃N = e2(4 − μ̄2)

|det(Ẑ )|2
(γ 2� + γ 2 + 2)(� + 1 + 2γ 2) − γ 2(� − 1)2

4π (2γ 2 + � + 1)
,

� j = 2
� − 1

� + 1 + 2γ 2
Ig. (C13)

Equation (C13) gives the periodic variation of � j with the
system size N , which is displayed in Fig. 3(c). We find that
whenever sin (N − 3)kF = 0, we get � j = 0 (irrespective of
the value of γ ), i.e., the nonreciprocity in the electrical current

vanishes. In this limit

�μ,N |�=1 = π |det(Ẑ )|2Ig

e(4 − μ̄2)γ 2(1 + γ 2)
. (C14)
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FIG. 10. Control of current nonreciprocity using quantum coher-
ence in a long wire with multiple S-D baths. The parameters are
N = 60, δμ/γo = 0.1, and Ig/Io = 0.1. We fix e = 1 in the plots.

Therefore, the electrochemical potentials of the S and
D baths are independent of δμ. This happens when-
ever the distance between the S and D baths, i.e., (N −
3) matches with an integer multiple of λF /2, where
λF = 2π/ cos−1(μ̄/2).

Next, we investigate whether such coherence effects sur-
vive in a longer wire (with multiple dimers), where we have
an extended ballistic region between consecutive S and D
baths. In Fig. 10, we consider a wire of size N = 60, where
the S baths are coupled at sites x = 2, 8, ..., N − 4 and the D
baths are coupled at sites x = 5, 11, ..., N − 1. We vary the
average L-R electrochemical potential μ̄ while keeping δμ

constant. We observe that the current nonreciprocity �I for
different values of γ becomes zero at μ̄/γo = 1.0 (inset of the
Fig. 10).

2. Change transport through an extended lattice with one
S and D bath using master equation description

Here, we show that the oscillations and zeros of current
nonreciprocity obtained within the quantum modeling do not
appear in a classical transport channel within the master
equation description. We consider a lattice of size N > 4.
The discrete time-evolution equations for the density fields
ρ±(x, t ) at the middle sites of the lattice, with only one S at
x = 2a and one D at x = (N − 1)a, are

ρ±(2a, t + τ ) − ρ±(2a, t ) = ρ±(2a ∓ a, t )

+ (1 − p)ρ∓(2a, t ) − ρ±(2a, t ) + Igτ

2ae
, (C15)

ρ+(x, t + τ ) − ρ+(x, t )

= [1 + (p − 1)δx,3a]ρ+(x − a, t ) − ρ+(x, t ), (C16)

ρ−(x, t + τ ) − ρ−(x, t )

= [1 + (p − 1)δx,(N−2)a]ρ−(x + a, t ) − ρ−(x, t ), (C17)

ρ±(L, t + τ ) − ρ±(L, t ) = ρ±(L ∓ a, t )

+ (1 − p)ρ∓(L, t ) − ρ±(L, t ) − Igτ

2ae
, (C18)

where x = 3a, 3a, ..., (N − 2)a. The solutions in the steady
state are obtained with the boundary condition ρ+(a) = δρ +
ρo and ρ−(L + a) = ρo, and they are given by

ρ+(2a) = (2 − p)
[ Ig

2evF
+ δρ

] + (3 − 2p)ρo

p(3 − 2p)
, (C19)

ρ−(2a) = ρo + 2(1 − p)
[ Ig

2evF
+ δρ + ρo

]
p(3 − 2p)

, (C20)

ρ+(L) = (p − 1) Ig

evF
+ δρ + (3 − 2p)ρo

p(3 − 2p)
, (C21)

ρ−(L) = (p − 2) Ig

2evF
+ (1 − p)δρ + (3 − 2p)ρo

p(3 − 2p)
. (C22)

The rest is obtained using: ρ+(L − a) = ρ+(L − 2a) = ... =
ρ+(3a) = pρ+(2a), and ρ−(3a) = ρ−(4a) = ... = ρ−(L −
a) = pρ−(L). Therefore, the current entering (leaving) the
lattice is

Iin = Iout = evF δρ − (1 − p)Ig

3 − 2p
, (C23)

and the current in the lattice between the S and D is

J (x) = evF δρ + (2 − p)Ig

3 − 2p
, x = 2a, 3a, ..., L − a. (C24)

We found that the current propagating through the lattice is in-
dependent of its length, and consequently, the nonreciprocity
does not vary with N .

APPENDIX D: RESISTIVE CIRCUIT MODEL OF
MULTIPLE S-D DIMERS

We have started our introduction in Sec. I with a few S
and D currents in three resistive circuits. Here, we focus on
the resistive circuit model of the wire (length L) coupled to
multiple S and D currents. Let us assume there are Ni/2 =
N/2 − 1 pairs of S and D currents arranged in the config-
uration (SDSD...) on the wire with a separation a between
them. The resistance R of the wire is uniformly distributed
along its length, i.e., R = L/σ , where σ denotes the wire’s
conductivity. All the currents are taken due to the flow of
positive charges (e > 0). The current flowing into the wire for
a forward voltage bias V is

Iin = σV − (N/2 − 1)aIg

(N − 1)a
= σ

V

L
− Ig

2

(
1 − a

L

)
. (D1)

The current nonreciprocity becomes Ig once again for L 	 a.
Next, we provide the voltage drop V (x) at the locations x in
the wire where the S and D currents are coupled:

V (la) = V − a

L

(
V + Ig

2

a

σ

)
(l − 2) − a

L

(
V − Ig

4

L − 2a

σ

)

+ (−1)l Ig

4

(
a

σ

)
, for l = 2, 3, ...N − 1. (D2)
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The voltage bias across the boundaries give V (a) = V , and
V (L + a) = 0. Now, the heat evolved per unit time from the
wire (Joule heating) due to the flow of charges between sites
x = la and x = (l + 1)a is

hl,l+1 = a

σ

[
σV + aIg/2

L
+ (−1)l Ig

2

]2

. (D3)

Therefore, the average heat energy generated (per unit time)
from the bulk of the wire, over a length scale a, is

hl−1,l + hl,l+1

2
= a

σ

[(
σV + aIg/2

L

)2

+
(

Ig

2

)2]
. (D4)

The above expression looks somehow similar to the form in
Eq. (B52), which was derived using S-D baths in the micro-
scopic treatment.
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