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Flow of cholesteric liquid crystals—I: Flow along the helical axis
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Abstract. It is shown that the essential features of Helfrich’s permeation model for
flow along the helical axis of a cholesteric liquid crystal can be derived approximately
on the basis of the Ericksen-Leslie theory.
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1. Imtroduction

Cholesteric liquid crystals are known to exhibit a remarkable non-Newtonian
behaviour, the apparent viscosity increasing by nearly a million times as the shear
rate drops from a high to a very low value (Porter e al 1966, 1969). Helfrich
(1969) has accounted for the very high apparent viscosity at low shear rates on
the basis of a ¢ permeation model” which assumes that flow takes place along the
helical axis without the helical structure itself moving because of anchoring effects
at the walls, and that the velocity profile is flat rather than parabolic. He has
shown that under these circumstances the apparent viscosity should be directly
proportional to the square of the radius of the tube, inversely proportional to the
square of the cholesteric pitch and independent of the shear rate. In the present
paper we examine this problem from the point of view of the continuum theory
and show that the main features of the permeation model do in fact follow as a
natural consequence of the Ericksen-Leslie equations without having to make any
special assumptions regarding the anchoring of the director at the boundaries.

2. Thedry' ‘ A

Leslie (1968 a, 1969) has developed a continuum theory of the cholesteric state
by extending the Ericksen-Leslie (Ericksen 1960, Leslie 1968 b) formulation for
nematic liquid crystals. The equations of motion for an incompressible cholesteric
liquid crystal, in the absence of temperature gradients, are '

“dv,

a = PPt ; h v (1
dzn . B
P1 —d_t?i =g+ 7y, ’ _» (2)

Here v, is the velocity at a point where the director orientation is ny, F, is the external
_body force per unit mass, g, the director body force per unit volume, #;;is the stress
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tensor per unit volume and =, the director stress tensor per unit volume. p is
the density of the fluid and p; a material constant having the dimensions of moment
of inertia. By using the entropy production inequality Leslie (1968 a) finds

W a
ty= —pdy— dne . et + atpp (nyny), x + I 3
K, §
W
my =B + S + aeyhy “
1, 3
and
W -
g =ym—Bn),;— o ol 3 + 1 (%)

Here p and y are arbitrary scalars and B, an arbitrary: vector arising out of the
constraints of incompressibility and of constant director magnitude and a is a
material constant. W is the elastic free energy per unit volume given by

2W =2K, [n* V X n]+ Ky, [V - n]?
+ Ky [ (V X 02+ Ky [(n* V) 0] (6)
Here K,, K11, Ky, and Ky, are the Frank elastic constants. The quantities t:, and

£: are the hydrodynamic contributions to the stress tensor and the director body
force respectively. They are given by

ty = pamnydipiny + ponty Ny + pgtiNy + pady + pshyitediy + pemitedyy  (7)

él = AN+ Anydyy ®3)
where

dy=dy=13%(v,,+ v,9)

Wy = —wy=2%(v,;— 9,,)

N = ny — wyn,

AL =p2—Hs

Ay = p5— e ®

and p, to pg are the viscosity coefficients. In nematics, A; <0; we shall assume
this to be the case in the present discussion. We have now to solve egs (1) and
(2) to get the velocity and director profiles.

2.1. Flow between parallel plates
We shall consider the flow of the liquid crystal between two parallel plates, caused

by a pressure gradient. We choose a right-handed cartesian system such that the
plates occupy the planes x = + h/2. We seek solutions of the form

n, = cos (qz + ¢) cos 6 v,=0
n, = sin (9z + ¢) cos 6 v, =0
n, = sin 0 v, = v : (10)

With  0=0(x2), é=4x2, v=0v().

This gives a cholesteric of pitch P = 2n/q with the helical axis along z for 6 =4
=v=0,
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We consider very low pressure gradients and retain only first powers in v, § and
é. Then

n,=C— ¢S
n,= S+ ¢C
ng=29

where C = cos gz, S = sin gz. Equation (2) reduces to (neglecting director inertia
and products like 90; v,z 6,15 0,405 Uy, 0,5 etC.)

0,00 (K11 — K22S%) — &,e0 (Ku1S + K33SC?) — b0 (K32S)
— 0,, [(Kas + 3Kg) gSC] — 15(2K39C) — AvgS +y (C — S¢) =0

an
8y40 (K22SC) + 120 (K33C?) + P18 (K22C) + 0,4 (KgaqC? + Ko (C* — 257) ql
— ¢,s (2K2095) + 2vgC + ¥ (S + C¢) =0 (12)

0 00 (K22S? + K33C?) + s [(Kzz — K1) S]+ 606 (K1)

A, — A
— 0 [(Kuy + Ks) 4C1 — 6 (Kieg®) + 25— 0. C+28 =0 (13)
In the above equations
0,, = 38/3x,
0y, = 0%26/0x0z, etc.
Similarly under the same approximation eq. (1) reduces to

p;. = - [(‘l_z*—_-l_bs) + ""2] qSCU.'
b = [mer =2 +52C*— 59 ] av. (14

D= a,u [(Kll - Kzz) qS] - ¢.u [(K'J.IS2 + Ksacz) 41
— b0 (Kzaq) — 0, [(Kyz + Kiys) °C]

+ v, ["‘ + (‘"‘2_"”) Cz] 15)

From eqs (11) and (12) we get
0,45 [(Kyy — Kpp) S] — 00 (K11, S + K”C’)

— Bus, (Kag) — 0,4 [(Koz + Ky3) gC] — Avg =0 (16)
From eqs (15) and (16) we find
V0 [l"’q + (Psz“" B2 C’] +v(\g) —pa=0 ' an

~ We make a * coarse-grained * approximation and replace % [(is + (15 — ) C*]
by an average value 7, and rewrite (17) as
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ﬁv,n + vAJqZ - p,a = 0 (18)
" A solution of eq. (18) with the boundary conditions v(4 #/2) =0 is
_ P [ coshkx
o) = 3g {1 Gosh kh/2 ] - (19)

where

k= (:M)*.
7
The velocity is symmetric about x = 0. The amount of liquid flowing per second
in the z direction is given by

Q= ?2v(x)dx=2}lzv(x)dx '

—hi2 0
_ Ph [1 _ tanhkh/2]
Ag? kh/2
Hence the apparent viscosity for this geometry is given by
_ _‘pnha _ - ’\1q2 h?
T 2g T [1 B tanhkh/2] (20)
khf2

when 4 =100 » and P = 1p, the velocity attains 0°99 of the maximum value
within a thickness of about 05 of the boundary. Thus in all practical situations,
the velocity profile is flat over most of the region between the plates* and

—_— A 2h2 )
N : Q1)

which is the analogue of Helfrich’s equation. The apparent viscosity is extremely
large. ’

2.2. Poiseuille fow
In cylindrical polar coordinates we seek solutions of the form
n,=cos(gz —y + ¢)cos 6
ny =sin(gz — ¢ + $) cos 0
n, = sin @ :
where 0 and ¢ are function of r, ¢ and z. Considering very small pressure gradients

we obtain to a first order in 6 and ¢

* We observe from eq. (14) that p, =p, =0 when v,, =0. This implies that secondary
flow is absent over most of the region between the plates. Of course, the choice of the velocity
field (10) and (23) is a physical assumption that is not strictly consistent with the basic equations
but justified a posteriori by the smallness of the error terms. Evidently the analysis fails very close
to the boundaries but as in Helfrich’s model we neglect this boundary layer. We are indebted
" to a referee for emphasizing this point. S
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n,=C—¢S
ng= S+ ¢C
n,=1~0 (22)

where
C = cos(gz —¥) and S = sin(gz — P).

For the velocity field we assume

’U,=0,
v¢=0

v,= v (r) ~ (23)
From eqs’ (1) and (2) we obtain for the velocity o

pa= B [+ (o — ) € + 52 a o ss =) S+ o

As before, replacing the coefficients of v, and v, by the average value 7 we
obtain

2 .
v,,,-i-% v,,+ﬁq——v-——i—‘=0 (24)
A well-behaved solution of eq. (24) is
2
MY B gL (kr)
1 U]

where A is a constant, I, is the modified Bessel function of the first kind and zero
order and

— A
k2= —" g%
7 4

Using the boundary condition v(R) =0, we find

P
4=~ 21 (kR)

and

Lo (kr)
v0)= 1~ 1w

where R is the radius of the tube.
The amount of liquid crystal flowing out per second

0= f 2mrv (r) dr

_ 2mpa [1_zf _RI (kR)]
= Ng: L2 ~ kI.(kR)

where I, is the modified first order Bessel function of the first kind.
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The apparent viscosity

-— AquRZ

o[- e )

Again in practical situations, the velocity profile is almost flat except very near
the boundaries and :

— Mg2R?
Nepp A __1%_

which is Helfrich’s equation. -
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