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Dynamical theory of reflexion from cholesteric liquid crystals
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Abstract. The analogy between the optical phenomena exhibited by
cholesterics and the diffraction of x-rays from perfect crystals is empha-
sized and some of its consequences are discussed. Difference equations
similar to those formulated by Darwin in his dynamical theory lead to
simple analytical expressions for the reflexion coefficient, rotatory
power and circular dichroism which are shown to be in good agree-
ment with the results of the rigorous electromagnetic treatment. An
extension of the theory to absorbing systems at once yields the relevant
formulae for the Borrmann effect in cholesterics. It is pointed out that
this simple approach should be sufficient for most. practical calculations.

Introduction

The reflexion of light from cholesteric liquid crystals at normal inci-
dence can be treated as analogous to the diffraction of x-rays from perfect
crystals’. As the dynamical theory of x-ray diffraction and its appli-
cations are now understood quite thoroughly this approach may prove to
be useful in elucidating the optical behaviour of cholesterics and in look-
ing for new optical analogues of certain well established x-ray effects.
An example of a new phenomenon reported recently is the Borrmann effect
in cholesterics2.

vThe aim of this paper is to review the results of the dynamical
theory of reflexion from cholesterics and to compare them with the predic-
tions of the rigorous electromagnetic treatment3-5. It is shown that
calculations based on the dynamical theory are sufficiently accurate for
most practical purposes.

Kinematical theory of reflexion

We regard the cholesteric structure as a pile of very thin birefringent
(quasi-nematic ) layers with the principal axes of the successive layers
turned through a small angle 8. Such a system can, in general, be replaced
by a rotator and a retardation plate for light propagating normal to
the layerss. However, for wavelengths comparable to the pitch P of the
helical structure and for sample thicknesses which are not too small (say
> 10 P) the system can be treated to a very good approximation as a
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pure rotator. Under such circumstances, the normal waves may be assumed
to be circularly polarized, i.e., right and left circular light travel with-
out change of form, but at slightly different velocities. The refractive
" indices for the two components are respectively!

= _(— Awp)l

M = M 3
(Awum)rp
ML = p,.}.T__

and the rotatory power in radians per unit thickness

_ _ m(AuPP
= 422 (1)

where A u = (u1 — u2) is the layer birefringence, u = ¥ (u1 + u2).

When the wavelength of the light in the medium is cqual to the
pitch, reflexion of one of the circular components takes place and, con-
trary to usual experience, the reflected wave has the same sense of circular
polarization as that of the incident wave. This will be clear from the
following simple argument. We shall suppose that the principal axes of
the first layer are along OX, OY of a cartesian coordinate system and
that the structure is right-handed, i.e., g is positive. Let right circular
light given by Do = []] referred to OX, OY be incident along OZ. To
calculate the reflexion coefficient at the boundary between the (v + 1)th
and (v + 2)th layers, we resolve the incident light vector along the prin-
cipal axes of the (v + 1)th layer which are inclined at an angle
(v + 1) B with respect to OX, OY. The resolved components are

[:] = [:] exp [i {(v+1)8 = ®pui 1],

where ¢, ,, = 27wuy (v + 1) p/d, p being the thickness of each
layer. At the boundary, the E vibration emerges from a medium of
refractive index u, and the 9 vibration from a medium of refractive index
m2. If §' and 7’ refer to the principal axes of the (v + 2)th layer,
then the reflected components are?

[i:] - ﬂzﬁ’u [;] exp[i {(v+1)8 - 9,11l

— - ig [_1] exp [i ((v+1)B8 - @111,

where |q| = BAwu/2u. We make the approximation here that
sin g~ 8, since B is assumed to be very small ( ~ 10-2radian). On reflexion
a very slight ellipticity is introduced in the transmitted beam, but
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we shall neglect this in the present discussion. Transforming back to
OX. OY, the reflected wave on reaching the surface of the liquid crystal
will be

[7] = - [ }] ewti t@senro-2eni,

which represents a right circular vibration travelling in the negative direc-
tion of OZ. Clearly the phase difference between this wave and that
reflected at the boundary between the first and second layers is
[2(vB-9,)]. When A = u,P, we have 2musp/d =fand ¢ =f

(since np = P and nB = 2m, where n is the number of layers per turn of
the helix ). Hence the phase factor exp [2i(vf - @ )] becomes unity

irrespective of the value of v, and there results a strong interference
maximum. On the other hand, for a left-handed structure, 8 is negative
and (vg8 - q>v) does not vanish when A = u,P. Therefore the waves from

the different layers will not be in phase and the vibration will be trans-
mitted practically unchanged.

Using the kinematical approximation the reflexion coefficient per turn
of the helix is then

-iQ = —ing = —-im A ulu. (2)

Dynamical theory of reflexion

The complete solution of the problem has to take into account the
effect of multiple reflexions. This can be done by setting up different
equations closely similar to those used by Darwin® in his dynamical theory
of x-ray diffraction. For the purposes of this theory, let us regard the
liquid crystal as consisting of a set of parallel planes spaced P apart,
Each plane therefore replaces the n birefringent layers per turn of the
helix of pitch P. We ascribe a reflexion coefficient —iQ per plane for
right circular light at normal incidence. Assuming the kinematical approxi-
mation for the n layers, Q is given by (2).

Let T, and S, be the complex amplitudes of the primary and reflected
waves at a point just above the rth plane, the topmost plane being
disignated by the serial number zero. Neglecting absorption, the
difference equation may be written as

S, = —-iQT, + exp(-ie) S, . (3)
T,y = exp(—-i® )T, -iQ exp (-2i® ) S,,1, (4)

where ¢ = 27 ug P/A. The reflexion coefficient is here taken to be the
same on both sides of the plane. Replacing r by (r-1) in (3) and
(4), substituting and simplifying, we obtain
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Tipy + Tomy = T, (5)

Sevt + Sieq = pS, (6)
where '

y = exp(i®) + exp(~i®) + Q% exp(—i® ). (7)

Suppose that the film consists of m planes, Putting S, =0, we
have from (6)

Sa—2 = ¥Sa-i,
Sas = PSaz = Sacy = (32 = 1) Su,
Sa-s = (¥ —2p) Sa-y, etc.,

and

(m-2) (m-4) (m-3)
1! 2!

=fn(y)Sm—l(SaY) (8)
Similarly, from (4), (5) and (7)

8o = [y=t - yod o+ y5 = ] S

T,y = exp(ie)T,
T.o» = [yexp(ie)-1]T,
Tas = [(y2-1) exp(i?)-y]T,, etc,

and
To = [fa(¥)exp (i?) - fu1(y)]Ta (9)
Since from (3),
Se-1 = —1QT,—y = - iQexp (ie) T,,
' the ratio of the reflected to the incident amplitude is
So _ _ 10fa(y)exp (i)
T, Ja (y)exp (i@ )—fa-1 (y) (10)

Let us assume a relation in the form I, ,, = xT,, so that x satisfies
1 . o .
x + 5y =y =exp(i®) + exp(-ie) + Q*exp(-io).

We have seen that the reflexion condition is ug P = A, or ¢, = 2m.
Accordingly we may write

P =27d, [A =9, + €,
where e =-27(2-21, )/A,
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which is a small quantity in the neighbourhood of the reflexion. Therefore,

x+%=exp(is)+exp(—is)+Q2exp(—ie) (11)
This suggests that in the neighbourhood of the reflexion we may put

x =exp(-§)exp(-i9, ) = exp(-§) (12)
where £ is small and may be complex. From (11) and (12),

E =& (Q*-¢€2)2.
When

y =exp(E) + exp(-§) = 2cosh £,
the series in (8) is given by

sinh m §

fn (y) = sinh £ ¢ ) (13)

substituting in (10) and simplifying
S, ., =—-iQexp(ie)

T, ~ iec + EcothmE °’ (14)
or
2 2
R = [_S_ = 0
T, €2 + E2coth2mgE (15)

From (9) and (13)

T . sinh m & sinh(m-1)E ]‘1
T, [exp(le) sinh £ sinh g

£ cosechm §

ie + E cothm§ (16)

Thus
2 2
Rt
To T,

For a thick specimen, m = oo,

So _ __ 9
when — Q < e < Q, § is real
So * o1,

R=’
To
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" The reflexion is total within this range. The spectrai width of total
reflexion AA = QA/mr ® QA¢/r. Using (2) Ad = PAu, in agreement with
the de Vries theory3.

Ilustrative curves of R as a function of wavelength are shown in
figure 1. The parameters chosen for the calculation are u=1.5, Au=0-07,
P=3330A. The thick specimen gives the well-known flat topped curve of
the dynamical theory, while the thin film gives a principal maximum
accompanied by subsidiary fringes, which have been observed experimen—
tally?: 19, The figure also shows the values computed from the exact theory
of Nityananda>!!, In the latter computations, the external isotropic medium
(external to the cholesteric specimen) is assumed to have a refractive
index of 1.5, so that the contribution of the ordinary Fresnel reflexion
coefficient at the cholesteric/isotropic interface is eliminated.

Anomalous rotatory dispersion

If reflexions are neglected, the optical rotation per thickness P of the
liquid crystal is 3 (9r—®. ) and the rotatory power is given by (1).
Near the region of reflexion, the right circular component suffers
anomalous phase retardation and, under certain circumstances, attenuation
as it travels through the medium. Left circular light on the other hand
exhibits normal behaviour throughout and as a consequence the rotatory
dispersion is anomalous around the reflecting region.

v v r T

08

0.0
0.45 047

049 0.5] 0.53 Q.55

“Ap) —
Figure 1  Reflexion coefficient R versus wavelength ) in the non-absorbing case:
(a) semi-infinite medium, (b) film of thickness 25P. Curves are derived

from the dynamical theory; circles represent values computed from the
exact theory 5+11,
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Thick specimen
According (12),
Tevy = x T,
where
x = exp(—E)exp (- ie,)
£ =+ (02 — )
Po = Pp — & = 2.

Inside the totally reflecting range, { is real and therefore the medium
becomes highly circularly dichroic. If very thin films are employed, the
emergent light is elliptically polarized. It 1is readily seen that the
ellipticity x produced per thickness P is given by

1 —exp (=8) _ tann g2,

an X = T ep (= ¢)

or
XL = E/2.

The azimuth of major axis of the ellipse after passing through a thickness

P is

71'(1\—/\0)_ ny? m(d—20)
(MR — ML) + Y -

=3 (% —9L) =

Here ¥ = wp ( An)/A. Therefore the rotatory power

A w)*P (2 = 20)
"='ﬂ(4,\z S a (18)

which is valid within the range Ay — Q/27 < A < A0 + Q/2m.

Outside the totally reflecting range E = i (e2—-Q2)!”2 and may be
positive or negative depending on whether e is positive or negative.
Therefore, A

=3 [(e2-0%)" + @9 — L]

=_"—"2_ [1—(

Hence the rotatory power

, = _ m(Aw?P (A= &) [ (1-—— '2] (19)

172

422
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Thin film

For a thin film the phase of the right circular wave can be evaluated
from (16):

T .
7= = A exp [—im (%0 + $)]
[
14
where tan m ¢ = Eooth mE

The optical rotation for thickness P is ‘
2 (Po+ ¢ — @) =3[(Pr— PL) + (& —¢)]
and the rotatory power

m (A r)2P + ($ — ¢)
472 2P )

Figures 2 and 3 show some typical calculations based on the above
equations. It will be seen that the reflexion, circular dichroism and

rotatory power predicted by this theory agree very closely with those of
the electromagnetic treatments.

Absorbing systems: The Borrmann effect

Suppose now that the birefringent layers are also linearly dichroic. Let
us assume that the principal axes of linear birefringence and linear

7.0 ~———————————————

18O
TE
2
v
'9 |90-
= 05
;-': i
& 20.0F
X —103
& : %
d Im(Kg) 1 X
2.0 M €
S oY ey

I i 1 ] n L " 1 1,
045 047 0.49 OS5l 053 . OS5
: A(p)
Figure 2 The wave vectors K; and K of the normal waves as functions of A in
a semi-infinite non-absorbing medium. Curves are derived from the dyna-
mical theory ; circles represent values computed from the exact theorys.
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Figure 3 Rotatory power © versus ) in the non-absorbing case: (a) semi-infinite
medium, (&) film of thickness 25P. Curves are derived from the dyna-
mical theory ; circles represent values computed from the exact theory3:!l,

/\ /\
dichroism are the same. If u, and u, be the principal complex refractive
A
indices of each layer, then the reflexion coefficient Q and the phase

A
retardation ¢ per pitch also become complex :

/\ AA
m
Q=7 =3
M
A 2 A 2 A m( AR )P?
Pr = S wrP = wP— ——0,
A Yr A M A (AA)zpz
27 2w 77 (A
Here
N\ /\ /\ N .
Av = uy — u2 My = up — iky
e N\ /N .
M=% (M1 + uM2) uz = p2 — ik2

ki and k, are the principal absorption coefficients.
All the equations obtained for non-absorbing media are still valid for

A A A
absorbing systems except that Q, ¢ and @, replace Q, ®g and ¢, respec-
tively.. For example, for the thick specimen, the reﬂexion coefficient R

for the right circular wave, the opt1ca1 rotatory power p ( which is now

complex ), the wave vectors K r and K L are given by
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5 2
R = Q
Tx(e- Bw
A\ /\ A2
N m(Au)P m(A—urP) [, (1_2\"
po= 4z + PA ~2
€
/N /N
N\
Here ~
N\
e = 27 (uxP=1)

/N A2 A2
E= (2 —c¢)
AN
Figure 4 shows the dependence R, p (the real part of p), and the
imaginary parts of 1/(\R and /IE'L on wavelength. Here k=13 (k;+k2)=0.02,
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Figure 4 (a) Reflexion coefficient R, (b) imaginary parts of K; and K,, (¢) rota-

tory power @, plotted as functions of A for an absorbing semi-infinite
medium.
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and Ak=(k, —k2)=0.028. The interesting result is obtained that on the

shorter wavelength side Im(Kg) 1is less than Im(;{\L ), i.e., the right
circular wave is less attenuated than the left circular wave, whilst on the
longer wavelength side the opposite is true. To observe this effect ihin
films have to be used.

The transmission coefficients Ty and Ty for the right and left circular
waves through an absorbing cholesteric film of thickness mP are given by

~ A
T. = | E cosech m § 2
R = I A N ~
1e + £ coth m .
A
Ty = |exp (—m®yL)|? (22)

The theoretical dependence of Ty and Ty on wavelength are shown in
figure 5, for both the non-absorbing and the absorbing cases for a film
thickness of 25 P. The structure being right-handed the right circular
component is reflected, and hence in the non-absorbing film (k=Ak=0),
Tg is always less than 7. On the other hand, in the absorbing case,
Tg shows an enhanced value on the short wavelength side of the reflexion
band, which is the analogue of the Borrmann effect. It can be shown that
T, will exhibit an anomalous increase for a left-handed structure (i. e.,
negative #) and also that the peak transmission will occur on the long
wavelength side of the reflexion if Ak is negative. These results are
found to be in good quantitative agreement with the rigorous treatment
of the phecnomenon by Nityananda et al2.
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Figure 5 Transmission coefficients Ty and T, for right and left circular waves for
a film of thickness 25P (a) non-absorbing, (b) absorbing. The enhanced
transmission for the right circular component in (b) is the analogue of
the Borrmann effect.
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Concluding remarks

‘We have shown that the dynamical model yields results in conformity
with the more detailed e.ectromagnetic theories. However, the simple
treatment presented here has certain limitations. Firstly, it is developed
for small ¢ and therefore does not hold good far away from the reflexion
band. Secondly, it is strictly valid only for integral values of the pitch;
and thirdly, it fails when the film thickness is very small (or when the
extinction length is of the order of a pitch) as the assumption that the
normal waves are circularly polarized is then no longer justified. These
limitations can be removed by including the effect of multiple reflexions
within the n layers per turn of the helix, which hds been neglected in
this discussion. The simple difference equations then become matrix
difference equations and the resulting solutions can be shown to be fully
equivalent to those of the rigorous treatmentS, However, the calculations
presented in previous sections indicate that this more elaborate formulation
of the theory is probably not necessary for most practical problems.
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