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Abstract. The paper discusses the theory of Couette flow of a nematic liquid
crystal. The apparent viscosity, orientation and velocity profiles are computed for
p-azoxXyanisole as functions of shear rate and magnetic field for symmetric and
asymmetric molecular alignments at the boundaries and for different relative radii
of the cylinders. For symmetric homeotropic boundary condition an azimuthal
field exhibits a threshold analogous to a Freedericksz transition. An expression
is also derived for the Freedericksz threshold in the hydrostatic case.
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1. Imtroduction

The Couette flow of nematics has formed the subject of some theoretical and experi-
mental studies in recent years. Atkin and Leslie (1970) have given the analytical
solution and scaling analysis for this type of flow in the absence of magnetic fields.
Their theory is in qualitative agreement with the sxperimental results of Porter
and Johnson (1962) who found an increase in the apparent viscosity with a decrease
in gap width. Currie (1970) has investigated a number of possible solutions in
the presence of magnetic fields without, however, investigating apparent viscosity.
Extending our previous studies (Kini and Ranganath 1975) we discuss here the
simplest and most likely solutions for Couette flow and present detailed calcu-
lations for the apparent viscosity as functions of the shear rate (or equivalently
the relative angular velocity of the two cylinders), of radial and azimuthal magretic
fields and also of the geometry of the viscometer, for symmetric and asymmetric
boundary conditions of molecuilar alignment at the two cylinders.

. 2. Theory

The differential equations governing the direstor orientation and velocity fields
for Couette flow in the presence of a magnetic field have been derived by Currie
(1970). A more simple and direct approach for deriving these equatiors is given.
below. The nematic is assumed to be confined in the annular space between two
coaxial cylinders of radii R, and R, (R, > R,;) with their commor. axis along z.
They rotate about their common. axis with constant angular velocities £, ard £,
respectively. We consider only planar flows and seek steady state solutiors for
the director and velocity fields in cylindrical polar coordinates
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n, = sin 8 (r) ng=cosb(r)  m=0
v, =0 vy = rw(r) v, = 0. (1)

Tne magnetic field components, consistent with the symmetry of the solution for
the director orientation are those which depend only on r, with H, equal to zero.
In order that H, and H,; may satisfy Maxwell’s equations

V.H=0 and VXH=0

we must have

a-(2.2.0) . o

where 4 and B are constants.

The Ericksen-Leslie equations (Ericksen 1962 a, Leslie 1968) governing the
hydromechanics of nematics are

pvi = Fy + ty, a9

pil = Gy + g + my - (39

where p is the density, p, the moment of inertia of the director, F, the external
body force per unit volume, G, the external director body force per unit volume
t; the stress tensor my the director surface stress, g, the intrinsic director body,
force .

W
ty = —pd;; — s My + padignngngny + ponngN,

+ mat Ny + padyy + psmdpn, + pemidim,

114

T = ——
= oy,

W
ge= =3, + WNet hdyn + ym,

N, =n,— Wally, Wy = (”(,g - ”h,;)/z-
dy = (Vs + vk,i)/z’ AL = pg —p3, Ay =p; — He-

Here p, to ug are the viscosity coefficients introduced by Leslie (1968), W is the
Frank elastic energy per unitvolume p and y are arbitrary constants arising from
constraints that the fluid is incompressible and the director is of constant magni-
tude.

2W =ky(V .02+ kyu(m. v X n)? 4 ks [(n . V) n]?
with kyy, ks, ks as the elastic constants of a nematic liquid crystal.

Since the magnetic field is inhomogeneous it contributes to the body force
xnﬂuencmg the translational velocxty

= |AxHnn, + xoHil Hy | )
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where Ay is the diamagnetic susceptibility anisotropy (= x1 — x2) ad xi, X2
(x1 > x2) are the principal diamagnetic susceptibilities of the nematic (Ericksen
1962 a). The director orienting external body force G, is given by

Gy = AxH.nH,. \ &)

The surviving components of the director surface stress 7, and the intrinsic director
body force g, are

do n df  sin 0 cos?t
—kn[co Ga—-l-s—l—-]—}—k%[sm Ocosod—r————r——]

‘ i 20 9
Ty = kn [cos 0 ‘—‘117 + sin 9] + kgg [§1_1_1_0_;c_o_s__ —sin? 0 cos 0 3‘1_’]

in2
Trp = Kas [S——"”—m 0rcos o sin® 0 Z—”
3
g = kn[sm 8 cos? 0 % _ o8 "] ©6)
g'___kaa[cosadd 0( ) (A -2/\2) chosﬁ-i—ysmf)

gy = — k[ 50 S0 D] (o2 ) r G sin 0+ cos .

— Aﬁx(A sin 8 -+ B cos 0)

(4sin 8 + B cos §) ) @)

BA
Gy = ,zx

are the r and ¥ components of G.

The expressions for 7, and g, are not identical with those derived by Atkin and
Leslie (1970). This is because these authors have used the expression for W
proposed by Leslie (1968) which includes terms with coefficients kg, and &y, in
addition to those containing k,, ard ky;. We have used Frank’s expression for
W, and since the deformations involved are merely splay and bend the terms
involving the twist constant k,, vanish from our expressions for =, and g,. Further,
Ericksen (1962 b) has shown that k,, does not play a part in. the equations of equili-
brium. In the present work we solve the equations of motion to get the appa-
rent viscosity, 6 profile and velocity profile, which are in no way determined by
k.s. The absence of k3 and k,, is therefore justified as is confirmed by the fact
that our differential eqs (9) and (15) are identical with (3.14) and (3.17) of Atkin
and Leslie (1970) except for magnetic terms, and that (14) is identical with (3.16).

Under the assumption of stezdy state, eq. (3 b) can be written as

d" r .
%+(L17M+Gr+gr+p1w2sm0=o

d‘ﬂ’,¢ ("r + r
dar + ¢r"¢)+G¢+g¢l+P1W2c°S(’=O' ®
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Substituting for =, g, and G; and eliminating (y + p,w?) from the eqs (8) we
obtain

200 [ %5 +2 T+ 5+ (5)]

d
+ 78 d—:" (A + 2, cos 26) |
+ 2A x [sin 6 cos 8 (42 — B?) -+ AB cos 26] = 0 )

where

f(0) = ky; 00820 + k. ,sin2f.

The surviving components of the stress tensor t,, and the external body force
F, are

ty=—p—fO (D) + 5,2V e 0= —p—i,
w=—r L2 GGt ’%gﬂ") = —p iy
WELT S s

=2 B35 3 A () + E2 25 0) + M+ Mrcos 20
F, = —’r‘_g(A2 + B?) —%’—‘(A sin 0 4 B cos 0)2

Fy = %’—( [sin 8 cos 0 (42 — B?) + AB cos 20] (10

where
2g (0) = 2, sin? 0 cos® 0 + pg + (s — po) Sin? 0 + (ug + pg) cos? 0
2g, (0) = 2u, sin® 0 cos 8 + (ug + py + p5 + p) sir 0 cos 0
2g, (0) = 2u, sin 0 cos® 8 + (ug5 + pg —ps — py) sin 0 cos 6’.'

Similarly in the steady state, eqs (3 @) become

di,y | (E —ty) _w_
_E' + r +F—= or !
dty | 1 (@ —}-z‘)-i—F-——“0
dr TR
d
2 _ . (11)

z



Couette flow of nematics 227

A separation of variables yields
p=Ej+L(r)

where E is a constant and

dL (t,.

= = Prw 2+ t¢¢)+F

r

For a single valued solution we put £ = 0 and hence eqs (11) reduce to

p=1L(r)
and

dt, ty + ty, _
2+ LR = (12)

Substituting for ¢, and F, in (12),

210 [ %2 +7 Fr+ D [+ (@) T+ 2oy + hcos )

-+ 2A x [sin 0 cos 8 (4% — B?) + AB cos 20]
d
+2r 2 [ & g(e)] + 4r3g(0) . (13)

Using eqs (9) and (12) we obtain
d d 1 a
- [rd—:—vg(ﬂ)J +22g() =0

which integrates to yield

rsz—:" 2(8) = ¢ = a constant (14)

Ty = €ipq Ny myq is the director contribution to the couple stress. The total couple
per unit length of a cylinder of radius r is

7 = 2w (r? tyy + r7,,) = 2Zmc = a constant.

Hence ¢ is a measure of the couple per unit length on either cylinder.
Using eqs (14) and (9),

a2  1df 19f
ro[G+ig)r+rdL+(& N
+ 2A x [sin 0 cos 8 (42 — B?) 4 AB cos 20]
(0) (A1 + Agcos28) = 0. (15)

We assume boundary conditions for ¢ and w in the form
8 (R) = 0,; 0 (Ry) = 6,
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For a certain value of ¢ we solve eq. (15) to obtain 6 as a function of r, compatible
with (16). Then we integrate eq. (14) to obtain the relative angular velocity, A £,
between the two cylinders

Rs

AQ=QZ_QI=Cf

1

dr
réi g (6)

and calculate the apparent viscosity

_ c(R?—R,Y)
T 2(@2— ) RPRE

It is of interest to note that the apparent viscosity does not depend directly on
the angular velocity of either cylinder but on their relative angular velocity.

3. Results

Computations have been carried out for p-azoxyanisole (PAA). The elastic and
‘viscosity coefficients have been assumed to be the same as those used by Tseng
et al (1972; see table | of Kini and Ranganath 1975) and the anisotropy of dia-
magnetic susceptibility A y has been taken to be 0136 x 10~ cgs (Gasparoux
and Prost 1971). The equations have been solved by the orthogonal collocation
method used by Finlayson 1972; Tseng et al 1972; see also Villadsen and Stewart
1967. We have chosen 16 collocation points corresponding to the sixteen zeros
of the Legendre polynomial Py, with double precision arithmetic. Computations
have been repeated with 24 collocation points for cases involving large deforma-
tions. The values of 5 obtained from the two calculations are found to agree
within 19. We have chosen R, = 1cm and R,=1'005cm for studying the
variation of 7 with shear rate and magnetic fields. We have considered two
boundary conditions.

0, =7n2=0,

At low shear rates 7 remains almost constant at the Miesowicz value n, = (g, +
ps —pa)/2 = 0092 poise for PAA (Miesowicz 1936, 1946). As the shear rate
.increases 7 decreases and approaches the Miesowicz valus 7y = (u3 + pg + pe)/2
= 0°024 poise for PAA, corresponding to molecules being oriented along the
flow. When a radial field H, (= 4/r) is applied there is a stabilizing effect and
n decreases at first more slowly with the increase of shear rate and finally approaches
n, at large shear rates.

In general n decreases in the presence of an azimuthal field Hy (= B/r) (figure
1 a). At low shear rates » remains almos: constant at »,, until B attains a value

Ry [k
B~ Ty L)

(see appendix), which in the static case corresponds to the Freedericksz thre-
shold below which there is no deformation. Above B, there is a fairly rapid change
of 7 with field and for large B, 7 approaches 7, (figure 2 4). At low shear rates
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Figure 1. Variation of apparent viscosity with shear rate and magnetic field for
Ry/R, = 1-005.
(@) 8, ==[2 = 0,;
Radial magnetic field 4 = (1) 5000, (2) 2500, (3) 0 gauss cm;
Azimuthal magnetic field B = (4) 1000, (5) 2000, (6) 3000 gauss cm;
(b6 0,=0; 0, =m/2
: A = (1) 10000, (2) 5000, (3) 2000, (4) 1000, (5) O gausscm, (6) B = 1000
gauss cir.

~ the value of 7 depends on whether B is greater or less than B, but at high shear
rates it approaches 7, regardless of the magnitude of B. At large shear rates 7 goes
up from about », and attains 7, as A4 increases from a low to a high value (figure
2 b).

At any given shear rate » decreases when the ratio Ry/R, is increased (figure 3 a).
This is in qualitative agreement with the results of Porter and Johnson (1962) who
found an increase in the apparent viscosity for a decrease in gap width. Atkin
and Leslie (1970) have predicted that the extremum of 6, for 6, = 0, ==/2 at
any shear rate should occur at a point 7, =[RiRy)}. When (R, + Ry)/2>
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Figure 2. Variation of apparent viscosity with magnetic field for R/R, = 1-005.
(@) Azimuthal field ¢ =103 dyne (1) 6, =2/2 =0, (2) 8, =0; &, =7/2;
() Radial field, (1) 8, =0; 6, =22, ¢ =102 dyne (2) 0, = 0, =n/2;

¢ = 10-0 dyne.

(R; —Ry), as is true in the present case with R, =1, R,=1005cm and
ra ~ (R, + R,)/2, the orientation profile is almost symmetric. But the asymmetry
in the orientation profile becomes perceptible as the ratio Ry/R, increases (figure

3 b).
01 = 0; 02=ﬂ]2

The variation of n with shear rate, magnetic field and geometry in this configura-
tion can also be explained in a similar manner. Two points may be emphasized
(a) the initial value of 7 at low shear rates for R, /R, = 1' 005 cm and in the absence
of magnetic fields is 0 57,4, about half of what it is for 0, = n/2 = 0, because a
deformation is present even in the absence of flow. As expected this initial value
increases with increasing 4, attaining 7, at large values of 4; and (b) there is no

threshold field for H.
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Figure 3. Variation of apparent viscosity and orientation profile with geometry.
(a) Variation of apparert viscosity with log, (Ry/Ry); ¢ = 10-3 dyne, (1) 0, =n/2

=40, (2) §, =0; 0, =x/2;
(b) Orientation profile 8, ==n/2 =46,, ¢=10"% dyne, R,/R, =(1) 1-005,

(2) 1-05, (3) 1-071, (4) 1-1, (5) 1-25, (6) 2:0;
(o) Ocientation profile 8, =0; 8, ==/2, ¢ =10"* dyne, RJ/R, = (1) 1-005,

(2) 1-05, (3) 11, (4) 1-25, (5) 2-0.
The corresponding orientation and velocity profiles for the two types of boun-

dary conditions are given in figures 3, 4 and 5.
It is found that there is a certain similarity between the results for Couette flow

with R, = 1 cm, R = 1.005cm and those obtained for shear flow (Kini 1976)
for a 50 4 sample; this is as it should be since for very large values of r the two
results should coincide. —
We have not treated the case in which 6, = 6, = 0 with molecules aligned along
the flow direction. Atkin and Leslie (1970) predict that at high shear rates all
molecules will be aligned at an angle 6, given by cos 20, = — A,/A,. With the
parameters used for PAA, 6, = 0 so that there will be no change in 5 with shear

rate and the behaviour will be Newtonian.

P-2
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Figure 4. Orientation profiles for various magnetic fields and shear rates for
Ry/R, =1-005. '

(@ H=0, 8, =0, =m/2, c=(1) 0-1, (2) 1-0, (3) 10:0 dynes;

(b)) H=0, 6, =0; 8, =m/2, c=(1) 0-01, (2) 0-1, (3) 1-0 dyne;

(¢) ¢ =10-0dyne, 0, ==/2 = 0,, 4 = (1) 15000, (2) 10000, (3) 5000, (4) O gauss cm;
(d) ¢ =10"8dyne, 0, =n/2 = 6,, B = (1) 0, (2) 1700, (3) 2000, (4) 3000 gauss cm;
(e) ¢ =10"%dyne, 8, = 0; 8 =n/2, 4 = (1) 4000, (2) 2000, (3) 1000, (4) 0 gauss cm;
(f) ¢ =10"% dyne, 6, =0; 6, = /2, B = (1) 0, (2) 1000, (3) 2000, (4) 3500 gauss cm-
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Appendix

Leslie (1970)* has considered a nematic confined in the annular space of two
coaxial cylinders of radii R, and R, (R, > R,), in the presence of a radial magnetic
field .

* Thanks are due to a referee for bringing this work to the author’s notice.
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Figure 5. Velocity profiles for various magnetic fields and shear rates.

(@ 6, =7/2=20, (1) ¢ =107 dyne, H =0, Ry/R, =1-25;
¢ =10-0 dyne, Ry/R, =1-005, A =(2) 0, (3) 10000, (4) 15000 gauss cm;
(5) H=0, ¢ = 10-3 dyne, R,/R, =1:083; H =0, R,/R, =1-005,¢c =(6) 1-0,
(7) 0-1, (8) 10~2 dyne; c = 10-3 dyne, R./R, = 1-005, B =(9) 3000, (10)
2000, (11) O gauss cm.

(b) 8, =0, 8,=m2;
¢ =103 dyne, H=0, Ry/R, = (1) 1-25, (2) 11, 3) ¢ =1-0 dyne, H =
0, R/R, = 1-005; (4) ¢ = 10-3 dyne, H =0, Ry/R, = 1-05; Ry/R, = 1-005,
H=0, c=(5 01, (6) 0-01 dyne; c =10-2 dync, Ry/R, =1-005 4 =
(7) 5000, (8) 10000 gauss cm;
¢ =103 dyne, R,/R, = 1-005, B =(9) 3000, (10) 1500, (11) O gausscm.

H, =

r

H , Hy =0, H,=0.

-

Seeking a solution for the director in the form n, =sin8(r), ny = cosf(r),
n, = 0 he finds that for boundary conditions 8 (R;) = 0 = 0 (R,) there exists a
critical value of H, given by

Ky T
Ll 2+k11"_k33

@ T

below which there is no deformation. For this case if the value of R,/R, exceeds
a value R, given by

k11772

MRE =~ (kys — k11)s

HD can become imagirary. This is a direct consequence of k;, being smaller
than k,, for all known nematics.
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Here we consider a similar problem, but with the boundary condition 8 (R,) =

0 (R;) ==/2 for an azimuthal magnetic field

H,=0, H¢=fi, , =0.

We assume that the director lies in the r§ plane and seek a solution in the form
n = (sin 8 (r), cos 8 (r), 0) with boundary conditions 8 (R,) = =/2and 6 (R,) = »/2
in the presence of a magnetic field H = (0, B/r,0)

Equations (3 b) simplify to

2@ G (5) +2r () + &

—2A x B?sin 0 cos 6 = 0.

o . . .
and integrating we obtain

Multiplying by @
dd \2 . ,
£0) + r2f(6) (dT) — Ay H?sin?0 = C
dd

where C' is a constant.

An analysis similar to the one given by Atkin and Leslie (1970) shows that P
From (17) we get C' =

(17

. —0and 8 = 0 an extremum at r=r, = [R,R,]}
S (0n) — A xB%sin%d,. Substituting in (17) and integrating we find

f am
df _ .rﬂ _ [f (¢)]; d¢
7 ~loeg = f LA x BE (sin®¢ —sin? g,) + f(0n) — (PP
Rl 77/2
(18)

Using the Legendre transformation

cos ¢ = cos b, sin A

in (18) we obtain
miz
sa 1 (ki — ks) sin® A cos? 4, ]5 A,

Tm k
log R, ;f [{Asz + ki —kag} {1 —sin® Acos? 0,,} )

Taking limits as 0, — =/2 we obtain a critical value B, of B given by

-l_ k33 772 , _ &
Bc =[Ax !(log ‘&)2 - k33 kll ] .
(\"° R,

It is of interest to note that since kg3 = k,, for nematics the expression for B, can
never become either zero or imaginary for reasonable values of R, and R, (i.e.

Rl# 0, R_# 09 R2> -Rl)-



Couette flow of nematics 235

2B¢ 7R+ Rz ) tGauss)

1000—5; 05 09
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Figure 6. Variation of 2B,/(R, + R,) as a function of R,/R, for PAA, with R, — R,

= 50 p.

If R, and R, are large compared to d = R, — R, we have

B' 7 [k_sa];

R, ~d Nx
For PAA -

B,

'Rl_ =~ 1750.

Figure 6 shows a plot of (7312—-%7@ as a function of %z for a constant gap width

of 50 u.
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