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Abstract. In this paper we study the trajectories of charged particles in an electro-
magnetic field superimposed on the Kerr background. The electromagnetic fields
considered are of two types: (i) a dipole magnetic field with an associated quadrupole
electric field, (ii) a2 uniform magnetic field. The contribution of the background
geometry to the electromagnetic field is taken through the solutions of Petterson and

* Wald respectively. The effective potential is studied in detail for the r-motion of
the particles in the equatorial plane and the orbits are obtained. The most interest-
ing aspect of the study is the illustration of the effect of inertial frame dragging due to
the rotation of the central star. This appears through the existence of nongyrating
bound orbits at and inside the ergo surface. The presence of the magnetic field seems
to increase the range of stable orbits, as was found in a previous study involving the
Schwarzschild background. .
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1. Introduction

There has been considerable interest in the investigation of electromagnetic fields
surrounding compact objects like neutron stars and black holes. Such studies shed
light on the interplay of electromagnetism and the curvature of spacetime due to
strong gravitational fields. Furthermore, they provide the basis for astrophysical
applications if relevant situations occur. In this context, the investigation of the
trajectories of charged particles can reveal the influence of the geometry on the
electromagnetic fields, just as the study of geodesics yields important information
regarding the structure of spacetime (Barden 1972, Bicak and Stuchilk 1976). At
the same time, it would constitute the orbit theory of the test charges which is the
first step towards the examination of possible plasma processes near collapsed objects.

The charged particle trajectories in a dipole magnetic field superposed on the
Schwarzschild background geometry have already been considered in a recent paper
(Prasanna and Varma 1977). There it was found that the presence of magnetic field
increases the range of stable orbits. It is known that almost all of the celestial bodies
do have a non-zero angular momentum and thus the Schwarzschild geometry does
not tell the whole story. Thus it is necessary to extend the studies of the charged
particle orbits to the case of Kerr background with an electromagnetic field. The
electromagnetic fields that we consider are of two types:

359



360 A R Prasanna and C V Vishveshwara

(i) a dipole magnetic field with an associated (induced) quadrupole electric field due
to the rotation of the central star; (higher multipoles) 2 O (a?) are assumed to be
negligible.

(ii) a uniform magnetic field surrounding the central star, which is constant at
infinity.

2. Field structure

The space-time metric for the external field of a rotating star of mass M and angular
velocity a is given by the Kerr solution which in Boyer-Lindquist coordinates may be
written as,

dst = — (1 — 2_»2) cide® —Msin’ﬁ dt dp
z z
+ (Z/A) dr* + Zd6? + (B|X) sin%6 dp?, 4))

where

Z=@+dcost), A=(+a—2m),m=2C

c

B = (r* + a*)® — Aad?sin? 0.

Case 1.

Several authors have obtained the solution for a stationary axisymmetric electro-
magnetic field around a rotating black hole by using Teukolsky’s perturbation
equations in the Newman-Penrose formalism (Chitre and Vishveshwara 1975;
Petterson 1975; King et al 1975). We shall use the expression for the vector potential
as given by Petterson restricting ourselves to the case of a dipole magnetic field with
no electrostatic charge (Q = 0) which is given by

4, =(4,, 0,0, Ap) )
4, — (‘iii) {[r(r— m) + (@ — mr)cos® 0]

lln‘({__m'i'_y
2y \r—m—y

- (&'—Z‘O—S-a)g(a’sin’l?—r’+mr)+

) —(r—m cos’G)}

[(** — 2mr® ++ ma®) + (r — m)a® cos® 6] L In ('_—_'_"il’)g o
2y \r—m—y

A,=(B1‘;i;zo) { r(r®* + mr 4 2a%) 4 (r — m) a® cos® 6

— [r(r®* — 2ma® + a*r) + Aadcos?f] .l_ln (’;"li'_".)g
2y r—-m—y
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with y = (m*—a®'2, B;7, and B, being constants.

From previous work (Prasanna and Varma 1977) concerning dipole magnetic field
on the Schwarzschild background, we know that in the absence of rotation (a = 0)
there is no electric field and 4, =0. This requires immediately the constant 8," = 0.
In order to determine B,', we consider the boundary condition, that the Kerr geometry
is asymptotically flat and thus as r—co the magnetic field and the electric field should
have the structure of dipole and quadrupole fields on flat spacetime respectively.
Accordingly we get,

B = F (3u/2y?) ®)
depending on whether the dipole moment g is parallel or antiparallel to the rotation

axis. However in our study we shall consider only the case with B,'=—3u/2/%
Hence we get the components of the vector potential to be

A, =( — zli {[r(r—m)ﬁ—(a“——mr) cos? 4]-

22z
L (r—m+y) —(r—m cos? ) } (6)
2y \r—m—y
Ap= ( —_ 3‘: :'l;; 0) {(r—m)a2 cos? 0-+r(r2+mr+-2a?)
—[r(P —2ma® + @) + Adcost 0] 1 In (’“’”*"’)%. 0]
2y r—m—y

Case 2. Uniform magnetic field

Wald (1974) has studied the case of a black hole in a uniform magnetic field, by
using the fact that a Killing vector in an empty space time serves as a vector potential
for a Maxwell test field. He has derived the solution for the electromagnetic field
when a stationary, axisymmetric black hole is placed in an originally uniform magnetic
field aligned along the symmetry axis of the black hole. We shall now use this
solution for studying the charged particle orbits. We shall again assume that there
is no electrostatic charge (@ =0). This would give us the vector potential to be

A= @) (bt 2 ) ®)

where ¢, is the space-like and 7, the time-like Killing vectors. As the background
geometry is that of Kerr we get the explicit solution as

A, = —aB, [ 1 — ”‘E’ (2—sin? 0)]

_ B, sin*§
>
B, being the magnetic field strength.

{(*+a*? — Aa? sin®8 — 4 ma’r} )

3. Equations of motion

As both the gravitational and the electromagnetic fields are axisymmetric and
stationary, there exist two Killing vectors such that for the motion of a charged
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particle of charge e and rest mass M,, there are two constants of motion, the
canonical angular momentum / and energy E as given by
(Up +edp) =1, (10)
(U; +ed,) = — E, an

wherein all quantities are normalised with respect to the particle rest mass M,. U,
and Up are connected with the components of particles proper velocity U* as follows:

Ut = —[BU,+2amrU,]/Z A
U? = [(Z-—2mr)Up[sin20 —2amrU,]|Z A. (12)
Using these in the general equations of motion of a charged particle in the presence

of an external force field

UtV U, = eF,,U°, 13)
with Fab = (Ab,n_An,b)'
We get the explicit equations:

d’r _ [m(r*—a? cos? 6)—ra® sin? 6] ( dr)2

ds? ZA ds
2
__2a%sin § cos 6 dr de _rA (d@) + (rz—a’ cos? 0) (dt)
z ds ds % ds
A sin2 @

{r*4-2r°a? cos? §—mr2a? sin? 6+(m—r)at sin? 4 cos? @

a cos 0) (%PY
-+ ra* cos? 9} (EE)
2 amsin® 6 (r2—a? cos® 0) dp dt

8 ds ds
e A dp dt}
= 4., 2L, 14
i 5 $ 45, 2 a, & (14)
11_2_0 n a® sin 6 cos 0(dr)2 2r dr d _ a®sin 0 cos 0( dﬁ)2
s ZA /] Tdds ~ Z ds
2 2
- ‘M sin 8 cos 8 dﬁ ‘_If —zl_mzsin 6 cos 0(‘2)2 (15)
23 : ds ds 23 ds
sin 6 cos 6 3 . dp\*?
— ——— [(P*+a?)?—(r'+a®+2) Ad?sin? 0] | =
23 ds
—e 1§, %+ dt %
Mz (P E T A
dp_ 1 5(1 2’”’) (I—Ag) + 2mra sin® (E + A,)/z§ (16)
ds /\sin%0
dt 1 2mra . .
—=_0—-—"_""(-4 p)+[(r’—{—a2)‘ Aad? sin?6] sin26 (E+A,)/E'% . (17D
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Introducing dimensionless quantities
p = rim, a = sim, o = ajm,
L = Ilm, T = ct/m, Ap = Apim, (18)

and rewriting the above equations we get:
d? _ [p*—a’c0s?0—pa®sin®f] (dp)2 __pA ( dﬁ)2

do? ZA do do
__2a*sinfcosf (dp\ (d0\ A, ., o o d-r)2
I (DE) - gt (3
-éf-&(p2 o? cos? 0)( )(dr) (19)
do) \ds
. /\sin%6

{p° + 2p%a? cos?0 — p%a? sin?0 + (1—p)at sin®f cos?d

23
+ patcos?d} (d_p)”
(T

:(A){M dp | dd, dfg d26
Z)Udp do ' dp do)’ do?

., a%sinf cosf (dp) 2p (dp) (d0)
55 &) Tr\el\E
__ a?sinf cosf (d0)2 __2pa? sinf cosf (d-r)2
z do 3 do
2 2
n 4pa(;;}-a)sin0 cosf (@) (dr) s1n0 cosO [(p*a2)®

24 g

— GHatt2) Act sinte] (2
o

(d,qp dp . ddrdr ) 0
d0 do db do

di o

®. ( 2){(2—2p)}(L—A,,)/sm20 + 2pa (E4-4,)). @1)
2= é) ([P +a2 — At sin® 6] (B+A-) —2pa C—Ap)}.  (22)

wherein A, and 4, are taken appropriate to the case under consideration.

4. Motion in the equatorial plane

The motion in the equatorial plane may be characterised by the equations of
motion obtained earlier for the particular 6 value, 8 ==/2, (d6/do) =0. The
motion is completely determined dy L, E and the space-time metric (1). Using (10)
and (11) in (8) we get:
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(U*) = (dpldo)* = 1/p® {[p(p*+0%) + 20%) (E+Ar)*
—4a(E+Ar) (L—Ap) — (p—2) L—ApY — pA). 3)

Following Bardeen (1972) we define the effective potential for p-motion by solving
for the turning points of the orbits given by U” = 0. Thus we get

Vet = Emin = — 4+ + K/R, _ (24)
with

K =[2a (L—4p) + AV?{p* (L—A4p)* + pR}]

R=(*+atpt2ah), A =(p*—2p+a?) @25)

Using the expressions for 4, and 4, for the two different cases we can write Vefr=
F(p) as a function of p and study the effective potential curves.

Case 1
As given in section 2, we have for this case the vector potential 4, from (6) and
(7) expressed in terms of p, o, ... by

b= )~ (Y- v o

= —3A
A= (3(I—a“)3’”) {2( V1—a?) (14p+(20%/p))

—(p‘-l—a’ —2—-‘1’) In (P—_—H-—l—;—a,)}, v4))
P p—1—V1—a?
where A = eu/m?.
Figures 1 to 7 show the plots of F as a function of p for different values of «, A and
L. From the expressions for 4, and A4y, it is apparent that both of them have logari-
thmic singularities at p = 1+ v 1—a?, the event horizon. This reflects in the
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effective potential having a maximum very near the event horizon. The Veg, then
decreases sharply to a minimum and then rises to a second maximum which is
indeed the centrifugal barrier (increases with increasing L) after which it smoothens
out towards a flat minimum at large distances.

Table 1. e =01 p = 199508
AL M, Pum, m P M, P,
10 12-8192 2:08423 0-842611 6-28404 1-01198 16-8720
100 8-59854 2:01456 1-84804 2:18804 14-4595 3-76862
50 500 <p 11-6013 1-99559 93-1164 3-04509
1000 <p <p 193-034 2:96226
10 40-0452 2:09604 0936031 14-9605 — >30
100 337370 2:05342 1-24632 3-:08303 9-:21090 5-71800
150 500 23-0221 2:00229 9-73257 2-05606 81-4313 3-39620
1000  26'5905 1-99573 22:2353 2:00061 179-838 3:13020
10 80-9224 2:09926 0-965100 267526 — >30
100 73-9496 2:07384 1-02406 4-54706 5-98416 8-70652
300 500 54-3433 2:02037 7-35614 2:26613 683250 3:95643
1000 46-0439 2:00229 19-2934 2:05606 162859 3-39615
10 135:433 2-10058 — >30 — >30
100 128:176 2:08417 096063 6:53117 4-12090 12-7139
300 500 103-591 2:03879 5-32077 2:61399 56:1497 4:72990
1000  85-9785 2:01455 15-8164 2-18795 144-429 3-76680
10 271-714 2:10159 — >30 — >30
100 264-238 2-09251 0-948504 11-5165 242389 22:7725
1000 500  235-184 2:06276 3-01195 3:56470 38-7794 6-70403
1000 207-182 2-03879 10-1563 2-61391 112-292 4-72980
Table 2. a = 0-45 p = 1-893128
A L M, Pat, m P M, P,
10 12-8915 2:00838 0-890279 6-47308 1-01526 15-8422
100 16-0621 1-91819 7:32076 2-13430 159340 3:34908
50 500 55-4341 1-89328 54-4258 1-89491 108-095 2:58653
1000 226-193 2:50157 <p <p
10 38-8490 2-02607 0944468 15-4044 — 30
100 39-2957 1-96595 3-:50699 3:07200 967194 5:36061
150 500 62-9607 1-90344 43-9813 1-98042 91-6956 2:95633
1000 111-207 1-89454 103-542 1-90469 206-972 2:67530
10 77-8445 203104 0967891 27-4247 — >30
100 77-3244 199352 1-97846 4-55540 6°14818 8-38249
300 500 90-4896 1-92509 31-8993 2-21900 74:6853 3-54696
1000 125-921 1-98344 87-7699 1-98036 183-388 2:95630
10 129-850 2:03310 — >30 — >30
100 128-898 2:00831 1-40363 6°55359 4-18971 12-4048
500 500 135-665 1-94740 22-0918 2-58623 59-9668 4-35004
1000 160-615 1-91818 70-4128 2-13311 159-191 3-34792
10 259-873 2:03466 —_— >30 — >30
100  258-577 2-:02131 1-40363 6:55359 2-44318 22:4631
1000 500  259-138 1-97830 22:0918 2:58623 59-9668 6-36417

1000 271-330 1-94740 43-6967 2:58581 119-926 4-34997
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Table 3. a=09 p = 1:435989
A L M, P, -m Pm M, Pm,
10 17:1867 1-59150 0-945115 677408 1-02038 14-5054
100 362314 1-49113 14:3917 197054 18-4438 2-75584
50 500  145:172 144383  128-928 1449905  145:060 179727
1000 293-991 1443758 285-360 1444918 316975 1-66985
10 48-3268 161315 0954271 16-0461 — >30
100 644536 1-54413 625395 303131 10-3195 4-89495
150 500  158-361 1447070 91:9033 173788 111455 229320
1000 293-124 1445100  234:375 155799  268-644 192509
10 951208 161951 0971178 28:35334 — >30
100 110039 1:57438 315455 4-55925 636627 7-96648
300 500 193913 149940 629132 207667 85-0729 297920
1000 316722 147070 183-554 1-73757  222:907 229320
10 157-530 162218 — >30 — >30
100 171-859 1-59147 1-95629 658202 4-27962 12:0086
500 500 249071 1-52421 425962 250276 656272 384514
1000 362:312 1449112 140-839 1496584  184-298 275563
10 313-567 1-62423 — >30 — >30
100 327-401 1-60720 1-25833 11-6342 246823 220653
1000 500  397-422 1-55751 21-1167 352571 42:4210 592552
1000 498-141 1-52421 84-7074 250169 131247 384513
Table 4. a =099 5 = 11141167
A L M, PMx m P M, pM2
10 22709 128234 0-955089 684573 1-02155 14-2328
100 536887 121282 15-7641 1-92745 19-0441 2:63176
50 500  207-965 1-16871  149-605 136570 158-687 1-58328
1000 410-321 115670 345-581 126304 358907 1-40367
10 61:9672 129757 0:956090 161857 — >30
100 90-8909 125012 676826 3.02038 10-4554 4-80183
150 500  234-881 1-19658  101-916 167119 116721 2-14703
1000 426653 1117774 266:489 1445206  288-604 173914
10 120921 1-30215 0-971808 28-5487 — >30
100 148937 1-27062 337956 4-55934 6-41064 7-88363
300 500 286134 121896 688432 2-03911 87-4797 286203
1000 469-762 1119658 203-568 1467075  233-439 214704
10 199-542 1-30409 — >30 — >30
100  227:095 128234 206368 658777 429775 11-9296
500 500  359-661 123651 464349 248079 66:8543 374335
1000 536-886 121282 154526 1492139 190-298 263182
10 396103 1:30559 — >30 — >30
100 423254 1-29334 1-29227 11-6481 2:47327 21-9857
1000 500 550610 1-25918 23-0041 361763 428539 5-83814
1000 719-322 1-23651 92:3871 247952 133-701 374335

Asymptotically as p - oo it may be seen that Ve goes as 1—(2/p)-+a?/p?, showing
that it tends to 1 from below. Tables 1 to 4 give the actual values of the effective
maxima (M,, M,) and the minimum (m,) and their locations pus,, pm, and p,y,

for different values of «, A, and L, between p=p=1+ v 1—a2+0-0001, and p=30.
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For a given « and A as L increases the M, increases continuously, whereas M,
decreases for lower values of a (~ 0-1) but increases for other values of a (2 0-45).
On the other hand, the effective minimum (m,) increases as L increases for all a and
A and moves inwards in p.

When L is fixed, as A increases, for all aM, increases whereas m; and M, keep
decreasing monotonically. Thus as A increases the potential well gets flatter and
moves outward in p. If L and A are fixed as a increases the entire potential well
moves upwards in energy and inwards in p. In the equatorial plane we know that
the ergosurface corresponds to p=2. From the figures and tables it is clear that
for some set of parameters the entire potential well stays outside the ergosurface
(e.g. a =01, A> 300) while in some other cases it stays completely within the
ergosurface (e.g. @ = 09, L>500, A<<50). For other set of values part of the
potential well stays inside and part outside the ergosurface.

Case 2

The vector potential for the case of a black hole immersed in a uniform magnetic
field as given in (11) expressed in dimensionless quantities take the form:

Ar = — da(1—1/p), A =eBym (28)

)]
Substituting these in Vg we get

Vet = Aa (1—1/p) + K|R (30)
with K and R as defined earlier. :

As we are taking a strictly less than 1, there is no singularity in the vector potential.
Asymptotically we find that

Vet 2 1+Aa+(@)2__9°9 31
P P
2 14+Aa+0(p?)-+constant.

Hence the effective potential increases as the square of the distance for large values
of p. There are only two extrema (one maximum and one minimum) for the effect-
tive potential, which we have tabulated in tables 5 to 8 for different values of
a, Aand L. As may be seen from the tables there always exist a potential well, but
it is either completely away from the ergosurface (a=0-1) or only a part of it lies
within the ergosurface with the rest outside.
For a given a and A as L increases the minimum moves outwards in p, whereas for
fixed a and L as A increases the minimum moves towards the event horizon. The
same thing happens for fixed L and A as a increases.

5. Orbits

In both the cases we have found existence of well defined potential wells. Naturally
only those particles which are confined inside the potential well will have bound orbits.
In order to get the actual orbits we integrate the set of equations :
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Table 5.

p = 1:99508
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d 1 2 - 2a
i (- -) L—Tp) + 22 (E+4n) (33)
do A P P
dr 1 2a? 2a -
gr_ 1 {(p2+a2+ ) @+ 40 - 2 @29}, (34)
do A P P
Table 7. a=09 p = 1435989
A L M Pa m Pm
10 — <p - < p
100 327177 1:47693 22-8575 2:00754
50 500 172-774 1:53396 35-5685 442338
1000 348-467 1:54506 38:6618 6:28128
10 — < P - < p
100 - < % - < %
150 500 167-681 1-50034 82:5349 2:54942
1000 342-790 1-52416 98-1962 3-60243
10 - <f - <p
100 — <p - <p
300 500 161-858 1-46744 123-895 1-84617
1000 335-362 1-50034 164-553 2-54873
10 - <P - < P
100 — <p — <p
500 500 157-224 1-44032 151-016 1:51735
1000 327-158 1-47686 225354 2-00083
10 - <P - <p
100 - <5 * - <p
1000 500 — <p — <p
1000 314-446 1-44032 302-013 1-51672
Table 8. a = 099 p= 1-141167
2 L M Pr m P
10 — < p — <p
100 44-1595 1-16043 25-1348 2:00711
50 500 221-784 1-16599 39-0247 4-41306
: 1000 443-833 1-16680 42:4337 627213
10 - < p — <p
100 43-7661 115077 38-2329 1-35232
150 500 221-273 1-16303 90-5889 2:54269
1000 443-305 1-16521 107-831 3-59218
10 — <p - <p
100 43-4183 1-14232 427122 1-18158
300 500 220-568 1-15922 136-592 1-84927
1000 442-546 116303 180653 2:54197
10 - < p - <p
100 — <5 — <5
500 500 219-729 1-15501 169-483 1-52132
1000 441-590 1-16041 247-882 2:00077
10 - <p - <p
100 — < p — < p
1000 500 218:084 1:14730 202-333 1-:25899
1000 439-458 1:15501 338776 1:52055
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with initial conditions
p=rpp P=p =0

(£),=+ (1 + 5+ 2 Jumcannr

do

4a - 1 2 -\
— 0 o) 12— G~ (- p?) [L—(Ep]
2 a?
—{1 - 4+ Z 35
( Po + Poz) % )

(A"')O = (Af)p=p0’ (A-Tp)o = (Zp)p=po-

Figures 8 to 17 give the orbits for the case 1 whereas figures 18 to 26 give the
orbits for the case 2. The most important point borne out in either case is that
the particle executes Larmor motion (gyration) only outside the ergosurface. This is
in fact the reflection of the effect of dragging of inertial frames by the rotating star.
For we know that if the particle has to gyrate, then during every Larmor circle the
particle angular velocity (dp/do) will be prograde for one half and retrograde for the
other half with respect to the angular velocity of the star. It is well known that in
the Kerr geometry the ergosurface is the static limit surface on and behind (towards
the event horizon) which no retrograde motion is possible. Thus the particle can
gyrate only outside the ergosurface. This fact can also be seen analytically as follows.
When a particle gyrates its (dp/do) has to go through zero for some p=p,, for which
(dp/do)p-<p, should be real and positive.

(dp/do)p—p, =0 gives
(1=-20p0) (L~ (Eplpmp,] + = [EH(Ap=pe] =0 36)

Using this in (dp/d0)2p=P , We get
(UpldoYpmp, = S {U~2lp)" LE+(p—p,T =1}

Since A > 0, in the region under consideration, (dp/do),—p, Will be real if and
only if

(1=2/p)! [EH(A)p=p ] > 1 (37)

This can be true only for (1—2/p,) > 0, or p, > 2, i.e. outside the ergosurface.
Another aspect of the dragging appears through the precession of the entire orbit
for every revolution. Looking at the actual plots we see that as the magnetic field
changes, for a given a and L, the nature of the orbit changes. For example, consider
the dipole field (figures 8~12). When A = 1000, 500 and 300, both the turning points
of the orbit lie outside p = 2 and thus there is gyration whereas when A — 150, and
50, both the turning points are inside p = 2 and thus there is no gyration. On the
other hand, if we consider the cases of figures 13—17, here a, A and L are kept cons-
tant and E alone varies. When E is large, (figures 13 and 14), the potential well is
such that the particle moves in and out of the ergosurface without gyrating. As the
energy is decreased it will be in the region of the potential well, which is completely
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Figure 11.

Figuves 8-12. Orbits in the equatorial plane for
different values of A but same a and L (dipole field).
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outside p = 2 and thus the particle gyrates. As we go down in energy towards the
potential minimum the Larmor circles get smaller and smaller. Figure 17 depicts
the case when the energy is almost near the minimum and thus the orbit looks almost
circular. At the potential minimum it is well known that the particle will have a
stable circular orbit.

We have similar orbits for the case of the uniform magnetic field too. Here in the
cases (figures 18 to 22) for the same «, L and E as A changes from 50 to 1000 (increas-
ing magnetic field) the motion is such that till A = 500 the particle moves in and out
of the ergosurface executing gyration while outside, and follows a purely prograde
motion inside. For A = 1000, the particle is completely within the ergosurface and
thus it does not gyrate. Figures 23 to 25 depict the other aspect that for fixed a, A
and L as the energy changes the orbits change. At E = 320, the particle is moving
in and out of the ergosurface while for E = 200 and 100 it stays completely outside
the ergosurface executing fully Larmor motion.

6. Concluding remarks

In the foregoing we have considered two types of magnetic fields. The case of the
uniform field could correspond to the galactic magnetic field surrounding the compact
object. The dipole field considered could correspond to the intrinsic magnetic field
of the compact object, if it is not a black hole. In such a case the vector potential
is well behaved down to the surface of the star. In the case of a blackhole the dipole
will have to be generated by external sources such as current rings exterior to the
event horizon. The possible existence of these current rings has been pointed out
by Petterson (1975). Our formalism applies to the region outside the current rings
which could lie very close to the event horizon.

As had been found earlier in the case of dipole magnetic field on the Schwarzschild
background, the essential role that the magnetic field plays is to stabilise the orbits.

a=0-45, A=500, L=1000, €=158 @=0.45, A=500, L=1000, €s130

1 1 1 L A 1 L

Py=2:13311, P, =1:93331, P,=311145 Po=2:13311, P£,=1.99754, P,=2.47679

Figure 13. Figure 14,
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Figure 18§. Figure 16.

@a=0-45, XA=500, L=1000, E=72

Figures 13-17. Orbits for different
energies but a, A and L being the
same (dipole field) .

L T | 1

Po = 2:13311, p, = 212822, P, =2:13963

Figure 17.

Existence of bound orbits depending on the structure of the potential well is similar
to the earlier case. However, the important difference is the existence of non gyrat-
ing bound orbits within the ergosphere as a result of the dragging of inertial frames
due to the rotation of the central star. Charged particles in the two different types
of bound orbits—gyrating non-gyrating—could possibly generate significantly
different radiation patterns. Further, the above study of orbits could also play an
important role while considering plasma discs and particularly the question of trans-
fer of angular momentum. The dynamics of the Penrose energy extraction process
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Figures 18-22. Orbits for different values of A but
’ same values of L and E (uniform magnetic field).
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Figure 26.

Figures 23-25. Orbits for different values or energy but same values of a, A and L

(uniform magnetic field).

Figure 26. A typical plot of a gyrating orbit well outside the ergosurface (uniform

magnetic field).

through injecting a particle into ergosphere should now be discussed with the help
of the details of the possible orbits for different values of energy, angular momentum,
magnetic field strength and the Kerr-angular velocity parameter a obtained in the

above study.
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