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Abstract. We make a statistical analysis of the periods P and period-
derivatives P of pulsars using a model independent theory of pulsar flow.

in the P-P diagram. Using the available sample of P and P values, we
estimate the current of pulsars flowing unidirectionally along the P-axis,
which is related to the pulsar birthrate. Because of radio luminosity
selection effects, the observed pulsar sample is biased towards low P and

high P. We allow for this by weighting each pulsar by a suitable scale

~ factor. We obtain the number of pulsars in our galaxy to be 6-051332

. ~-2.80
% 108 and the birthrate to be 0:0481%%4 pulsars yr—! galaxy—1. The quoted

.011
errors refer to 95 per cent conﬁdenge 1hmlts corresponding to fluctuations
arising from sampling, but make no allowance for other systematic and
random errors which could be substantial. The birthrate estimated here
is consistent with the supernova rate. We further conclude that a large

majority of pulsars make their first appearance at periods greater than

- 0-5s. This ‘injection’, which runs counter to present thinking, is prob-
‘ably connected with the physics of pulsar radio emission. Using a variant

of our theory, where we compute the current as a function of pulsa.r age’

(3P /B), we find support for the dipole braking model of pulsar evolution
upto 6 X 108 yr of age. We estimate the mean pulsar braking index to

‘be37+°3

—=0.8°
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1. Introduction

Neutron stars are widely believed to be born in supernova explosions (Baade and
Zw1cky 1934) - The matter in the envelope of the star forms the expanding super-
nova remnant (SNR) while the core of the progenitor star 1s compressed into the
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highly magnetised and rapidly rotating neutron star which is believed to manifest
itself as a pulsar (Gold 1968). If the above scenario is true, one expects to find a
strong association between pulsars on the one hand and supermovae and SNRs on
the other. However, observations have failed to bring this out. On the contrary,
there seem to be two important discrepancies:

(2) The birthrates of pulsars and supernovae in the galaxy are apparently in dis-
agreement. Pulsars are believed to be born once every six to eight years (Taylor
and Manchester 1977; Phinney and Blandford 1981). On the other hand, estimates
of the birthrate of supernovae, while varying over a wide range of values (Ilovaisky
and Lequeux 1972; Tammann 1974; Clark and Caswell 1976), seem to be converging
to one supernova every thirty years (Clark and Stephenson 1977; Srinivasan and
Dwarakanath 1981).

(b) Among the 300 or more pulsars and 120 SNRs known, positional associations
have been reliably established only in two cases (the Crab and Vela pulsars).

In this paper, the main thrust of our calculations is towards obtaining a more
reliable pulsar birthrate. Usually, the birthrate of pulsars is computed by the simple
argument that, in steady state conditions, the total number of pulsars.#” in our galaxy
should be equal to the birthrate B multiplied by the mean lifetime of pulsars . N
is obtained by using the inferred space density of potentially observable pulsars in our
galaxy, and multiplying it by a ‘beaming-factor’ K which accounts for those pulsars
which are not beamed towards the earth. Ttis believed (Taylor and Manchester 1977)
that 4" ~ 5 % 105 pulsars. By assuming the dipole model for pulsar braking (Ostriker

and Gunn 1969), ,, can be estimated through the relation 7 = % P/13 where 7 is the

present age of a pulsar, P is its period and P is its (dimensionless) period derivative.
Alternatively, 7,, can also be estimated by dividing the mean height (z) of pulsars
above the galactic plane by their mean z-velocity (V,) ((V,) can be obtained
indirectly from the proper motions which have been measured for a few pulsars).
This ‘ kinematic > age has the advantage of being independent of errors in pulsar
distances. By using a combination of both values of =, Taylor and Manchester
(1977) computed a birthrate of one pulsar every six years in our galaxy. -

In this paper, we have adopted an entirely different approach to the birthrate cal-

culation. We use the concept of pulsar current in the P-P diagram which has been
recently introduced by Phinney and Blandford (1981) and Narayan and Vivekanand
(1981). We show that the birthrate can be related to the component of current Jp
parallel to the P axis. Jp can be estimated from pulsar data independently of any model
of pulsar evolution. This is a powerful advantage in our calculations since, as men-
tioned above, previous attempts usually require postulating the dipole model for pulsar
braking. The second new feature in our analysis is that we have treated luminosity
selection effects in detail. All earlier calculations assumed that selection effects
could be handled with a single scale factor from the observed pulsars to the total
population in the galaxy. However, it is known (Lyne, Ritchings and Smith 1975)

that the luminosities L of pulsars are correlated with P and P (hence 7 also). Conse-
quently, the necessary scale factor differs from one pulsar to the other (Taylor 1981,
personal communication). We have carried out this more detailed analysis and find
that it makes a significant difference to the answers. We now obtain a mean pulsar

birthrate of one pulsar every 21 years which is in comfortable agreement with current
estimates of supernova explosion rates. ‘ : S
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The paper is divided into two parts (Sections 2 and 3). In Section 2, our analysis
is model free and we make very few approximations. The numbers we obtain from
these calculations are therefore unbiased. Unfortunately, in the process, we lose in
statistical significance (as anticipated by Phinney and Blandford 1981) and the ex-
pected errors on the estimated quantities are very large. A preliminary version of
these results was recently published (Narayan and Vivekanand 1981). '

Section 3 deals with an ‘ improved’ analysis whose main attempt is to reduce
the statistical errors. ‘This we have achieved by modelling the dependence of radio

luminosity upon P and P by the following functional form (first used by Lyne,
Ritchings and Smith 1975)

L' (P, P) «c P* PP ()
where L’ is the ¢ mean > luminosity of pulsars of a given P and P. By making certain
further approximations, which are discussed in Section 3.2, we have computed the

scaling factor as a function of P and P alone. Using a fairly stringent statistical test,
we have verified that equation (1) and the approximations made are a fair and un-
biased representation of the data. Furthermore, the pulsar birthrate we compute
with the new scales is statistically consistent with the result in Section 2, thus increasing
our confidence in the new results. As anticipated, there is a significant improvement
in the confidence limits of our results, the error bars being reduced by more than a
factor of three. : -
The results of Section 3 are sufficiently accurate to enable us to investigate in coarse
detail the variation of J, as a function of P. Surprisingly, we find that Jp is quite
low at small values of P and picks up significantly at P > 0-5 s. The startling impli-

cation of this is that a number of pulsars are ‘ born’ in the P—P diagram with fairly
large periods. This is totally contrary to the current belief that most neutron stars,
and therefore pulsars, are born with periods of the order of a few milliseconds. We
therefore conclude that although neutron stars may be born with very short periods
(which seems to be suggested by angular momentum considerations), many of them

probably turn on as pulsars only somewhat later in their life. Apart from explaining
the ‘injection’ of pulsars at higher periods, this suggestion would also naturally
account for the lack of many pulsar-SNR associations, which is the second discre-
pancy mentioned earlier. Of course, we also need to assume that neutron stars cool
quickly after birth to explain the lack of X-ray emission from the (hot) surface.

-Lastly, we have computed an average value for the * braking-index * n. By compa-
ring Jp with the current J parallel to 7, we estimate the braking index to be n o 3710 3.
This result, which is not inconsistent with the dipole model for pulsar braking (n = 3),
is important because all earlier studies on pulsar evolution have neglected selection
effects as well as pulsar injection and could therefore be seriously in error.

2. Model-free approach

2.1 Introduction

* In this section we present the basic theory of pulsar current J parallel to the P-axis
and its connection with pulsar birthrate. We introduce the scale factor S(L), which
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gives the ratio of all potentially observable pulsars of luminosity L. in the galaky to

those observed, and describe how it is computed. We apply the theory to the P, P
and I data of 210 pulsars (Although more than 300 pulsars have been detected so
far, we have ¢ pruned * the data to 210 pulsars for reasons that are given later). Using
the theory, we estimate the mumber of pulsars in our galaxy and also make a model-
independent estimation of pulsar birthrate. Finally, we calculate the current J
parallel to r and find that the dipole model for pulsar braking is a reasonable descrip-
tion of ‘ young’ pulsars.

2.2 Theory of Pulsar Current

We make the following two postulates: ,

() The distribution of pulsars in the Galaxy isina steady state. This is reasonable
since the lifetimes of pulsars, believed to be a few million years, are much smaller
than the lifetime of our galaxy.

(b) The period of a pulsar always increases with age. In support of this is the fact
that every observed P is positive.

Let p(P, P, L) dP dP dL be the number of pulsars in our galaxy in the period range
P to P + dP, period derivative range P to P + dP, and radio luminosity range L

to L - dL. Since P is the component of pulsar ‘ velocity * parallel to the P-axis, the

¢ current ’ of pulsars (number per unit time) at any P moving from lower values of P
to higher values is evidently given by

Jp(P) = ff p(P, P, L)f’dﬁdL pulsars st galaxy—2. 2

Tt turns out that the statistics are too poor for usto compute the fi unction.J » With any

reliability from the available data. Hence we consider an average of Jp over a range
Of periOd from Pmln to .Pmax

. 1 : Prax - ) .
T (Pin, P '=————--————‘fJPdP. 3
P( min, max) (Pmax . Pmm) P( ) ’ ( )
vain : )
Fig. 1 illustrates the relation between Jp and B, the birthrate of pulsars. Since all
P are positive, the continuity equation implies that J (P) is identically equal to the
total birthrate of pulsars in the period range 0 to P, minus the death rate in the same
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Figure 1. Qualitative plot of pulsar current J,, against period P. Bis thetotal birthrate of pulsars.
All births oceur for 0 < P < P; while all deaths occur for P > Py, (@) P, > Py; (b) Py, > Py
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range. Let all births occur between 0 and P, and all deaths occur beyond P,. If,
as in Fig. 1(a), P, > Py, then there is a plateau in J, between P, and P, where the
function is equal to the total birthrate B. However, if there is an overlap of birtns
and deaths as in Fig. 1(b) (i.e. P, < Py), then J;, is less than B at all P. By the above
arguments, it is clear that J, » (Pmin, Pmax) defined in equation (3) is always a lower
bound on B whatever Ppjy and Ppax We may choose. In practice, we closely examine
the noisy Jp calculated from experimental data and compute J, p for values of Ppin
and Ppax selected at the two edges of the apparent plateau. It is then reasonable to
expect that the value of Jp 50 obtamed is a close estimate of B itself and not just a
lower bound.

The total pulsar density p(P, P, L) is not dlrectly available. It is related“to the

observed density function p, (P, P, L) by two factors:
* (a) There is a ‘ beaming-factor > K which arises because many pulsars may not be
beamed towards us. K is generally assumed to be 5 (Taylor and Manchester 1977).
(b) There is a scale factor S(L) which arises because pulsars of a given L can be
detected only upto a certain maximum distance by the instruments currently avail-
able. S(L) also allows for those parts of the sky which have not been searched by the
various surveys. We discuss S(L) in further detail in the next section.
Therefore,

p(P, P, L) = K S(L) py (P, P, L. ©)

The observed density function pe(P, P, L) is not known as a continuous function.

Instead we have P, P and L values for N pulsars We therefore approximate equa-
tion (4) by the following expression

N
WP, 5L S KSQ) 5 B — P) 8 (P—P)8(L—L) ©)
i=1 . o '

where § (x) is the Dirac délta function at x = 0. We may point out that J, » is evalu-

ated as an integral over P, Pand L and therefore the 8-functions in equation (5) are
always integrated out in the quantities of interest to us. Substituting equation (5)

in equation (3), we obtain an estimate of J, » in the form

;- . s N : .‘K- . . . N .
JP,est(Pnﬁn,Pmax)zm)ES(Lt)Pu Puin < P; < Pryax - (6)

In Appendix A, we have shown that the variance of this estimator is

) . K2 . ) . - L .
—_ 2 . . .
%= P P E Szv(‘Ll)P‘,-,‘ Pmn§P1<Pmax‘. . | (7)
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Equation (7) allows for errors arising from fluctuations in the observed sample but
does not take into account possible errors in K and S(Ly). ;

As mentioned before, J, p, est would be an unbiased estimétor of the birthrate B if

Pppin and Ppyax correspond to the true plateau region of Jp and if the birth and
death domains are non-overlapping as in Fig. 1(a). If not, Jp, est is, in any case, an
estimator of a rigorous lower bound on B. )
Before closing this section, we briefly discuss the convergence of the integral in
equation (2). Phinneyand Blandford (1981) claim (i) that the observed distribution of

pulsars is free of selection effects (i.e. in our notation, p(P, P, L) =K (S) po(P; P, L)

where ¢(S) is a constant scale for all pulsars), (ii) that at large P, po(P, P) oc P72,
(iii) that therefore the integral in equation (2) is divergent. On these grounds they
expect ¢ kinematic approaches’ such as ours to be ‘ doomed to failure’ and have
instead attempted a ¢ dynamical approach’. We, however, find a systematic varia-

tion of L over the P-P plane (see Section 3.2). Therefore our scale factors S(L) are a
necessary and important input for the evaluation of the integral in equation (2). Very

roughly, S(L) is seen to vary as P-12, While this anticorrelation of S(L) with P does
not remove the apparent divergence noted by Phinney and Blandford (198 1), it cer-
tainly improves matters. Moreover, we show in Section 3.4 that there is a cut-off

value of P above which pliisars apparently do not function. Such a cut-off will
obviously cure all divergence problems. Finally, in the event that there really is a

long tail in the distribution of pulsars at high values of P, we are left ‘with the

implication that there are many unseen pulsars in the top region of the P-P diagram.

If so, all forms of analysis including the dynamical approach are bound to be
incomplete. o ’ : :

2.3 Scale Factors

We have computed the scale factors, S(L), using the parameters of the three major
pulsar surveys viz. the Jodrell Bank survey (Davies, Lyne and Seiradakis 1972, 1973),
the Arecibo survey (Hulse and Taylor 1974, 1975) and the II Molonglo survey
(Manchester et al. 1978). We used the following equation for S(L)

f J fPRg (R,)P, (z) R, dR, d6 dz

S@) =
[T oz, R P2 (@) 1(L, Ry, 6, 2) R, dR, db ds

®)

where PR, describes the variation of pulsar density with galactocentric radius R, and
p, describes the density as a function of height z above the galactic plane. 0 is the
polar angle defined with respect to the galactic centre. The parameter n(L, R, 6, 2)
is set to the value 1 if a pulsar of luminosity L at coordinates R,, 6, z can be detected
by any of the three surveys. Otherwise, it is set to zero. ‘Therefore, the denominator
of equation (8) is proportional to the number of pulsars of radio luminosity L which
can be detected by the three reference surveys while the numerator is proportional
to all potentially observable pulsars in the galaxy with luminosity L. In computing
S(p) through equation (8), we have adopted an exponential form for p, with. a scale
height of 350 pc (Manchester 1979). For pr;, we have fitted the experimental histo-
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gram of number of pulsars against R, given by Manchester (1979) to obtain the
following gaussian form

PR, (R,) o< exp [— (R,/109)], | | 0O

where R, is measured in kpc. It is interesting that the scale length of 10-9 kpc is
close to the radial distance of the sun from the galactic centre. This illustrates the
well-known fact that the density of pulsars falls off rapidly with galactocentric radius
in the solar neighbourhood. The function (9) is probably incorrect in the range
0<<R,< 4 kpc where observations seem to suggest a deficit of pulsars. However,
this region is only about 10 per cent of the volume of the galaxy and can cause a
systematic error of at most 20 per cent in our calculations.

S(L) was calculated at a number of selected values of L using a Monte Carlo method
to evaluate the integrals in equation (8). The luminosities of the observed pulsars were
calculated from their radio fluxes and estimated distances. Following the convention
of Taylor and Manchester (1977), we have evaluated L in units of mJy kpc?®. Distances
were calculated from the observed dispersion measures, assuming the interstellar
electron density 7, in the plane of the galaxy to be 0-03 ¢cm~3 and taking a scale height
of 1 kpc for decay of n, in the z direction (Taylor and Manchester 1977). We have
corrected for intervening H 1 regions using a modification of the Prentice and ter Haar
(1969) correction, which is discussed in Appendix B. For some pulsars, independent
estimates of distance are available (Manchester and Taylor 1977), and these havc
been adopted in preference to the distances derived from the dispersion measure. .

Out of the total of 302 pulsars detected, we have selected a ‘ pruned’ list of 210
pulsars so as to obtain a uniform sample of pulsars consistent with the scale factors
S(L). The pruning was done on the basis of two criteria:

(a) The pruned list should contain only those pulsars which were detected by the
three reference surveys. This precaution is necessary since we have computed S(L)
using only these three surveys.

(b) In computing S(L) we have used the published parameters (such as sensitivity,
sky coverage etc.) of the three surveys. Since the data base should also be consistent.
with these parameters, we have omitted those pulsars whose radio fluxes were below
the quoted minimum flux detection levels of the surveys. At this stage, it would have
been ideal to take into account the intrinsic intensity variations displayed by many
pulsars. This would further affect the observability of pulsars by the three surveys,
thereby affecting the computation of S(L). However, this would require detailed
information such as the phase of the intensity variation of each pulsar at the time
of search “For lack of information, we have chosen to ignore this comphcatlon

After pruning, we were left with 210 pulsars, of which we knew the P values of 185
pulsars and L values of 207 pulsars.. Individual scale factors S(L) were then computed
for all the pulsars with known L values by suitably 1nterpolatmg in the table of S(L)
values which we had calculated earlier.

2.4 Number of Pulsars in the Galaxy

The total number of pulsars in the galaxy is given by

& = ([f o b ryapabaL " - (10)
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which can be written in terms of the observed p, as -
#=K [ [[ S@) pP, P, I) aP dp dL . - 1)

Using equation (5) for py, We obtain the following estimate for 4".
Fog=K D ST D 12)
. i=1 : :

The standard deviation o i of # . can be shown to be given by (Appendix A)

o2 = K282 (L). | N ¢ &
7 K;Sm )

Using the data on 210 pulsars, we obtain 4 to be 605 (4 1-88) X 105 pulsars.
Now, the error limits specified by 4 o i 4+ 20 Ve etc., have well defined m;anings

only if the distribution of 4" ;. is gaussian. This is not so in the present case because
S(L) is spread over five orders of magnitude. The bulk of 4 in equation (12) is

actually contributed by only a few of the highest values of S(L). We can therefore
expect the distribution of "¢y to be highly asymmetric and non-gaussian. Conse-

quently, a more meaningful concept in the present case is the confidence limit. We
have derived the following upper and lower boundson #’ o at a 95 per cent confidence

level (the method of calculating these confidence limits is briefly given in Appendix C).

v est \ 95 per cent, lovwer — 3:19 x 108 pulsars, ' o (14)

4 est "95 per cent, upper = 9'37 X 105. pulsars. : : (15)
The limits in equations (14) and (15) are formal estimates of fluctuations arising from
the Poissonian nature of the observed sample of pulsars. In addition, there could be
significant errors in S(L,), arising from uncertainties in the distances of pulsars (,
is not known reliably) and in K. It should be remembered that these unestimated
errors could be comparable to if not larger than the formal errors quoted here and in
all subsequent sections of the paper. Arnett and Lerche (1981)have, in fact, concluded
that the uncertainties in K and n, are so large and certain other details, not relevant
in our analysis, are so poorly understood that any statistical analysis of pulsar data
is meaningless. We take a more optimistic view. ' o "

Our results for 4 are in good agreement with the currently accepted value (Taylor
and Manchester 1977) of 4~ = 5 x 105. This is an independent check on our analysis
and, in particular, on our values of S(L). ' e e

2.5 ‘Pulsar Birthrate

We estimate the birthrate by the ¢ plateau-value ’ of J_P est Prin. Prmag) 28 deséribé‘d

in Section 2.2. Fig. 2 shows the values of fP est I various 0-5s bins of period. The
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Figure 2. Plot of estimated mean pulsar current J P, est'a'gainst'period P. Error limits are specifie
at a 95 per cent confidence level. Jp has been averaged over period intervals of 0-5s. However,

the qualitative nature of the histogram remains unchanged under finer binning in period. Scale
values S(L) (derived from observed lgminqsities) have been used.

bin size was selected so as to have the best combination of good resolution in period
and good error estimates. It would appear from Fig. 2 that a plateau exists from
Ppin = 0-58 to Ppax = 1'5s.  We thus estimate the birthrate of pulsars to be

B o Jp, est (0°5, 1:5) = 007430 pulsars yr—* galaxy™ . 1 - (16)

or one pulsar born every 14+3 years, where the error limits correspond to the lower
and upper bounds at 95 per cent confidence. The above result is slightly different
from, but consistent with, the value we had published earlier (Narayan and Vive-
kanand 1981). The difference arises because Pmyin Was earlier taken to be 0s. Keep-
ing in mind that the error bounds refer to the 95 per cent confidence limits, and that
the present analysis is approximation free and model independent, we consider the
results satisfactory. However, we obtain tighter estimates in Section 3.

2.6 Birthrate on the Basis of a Dipole Model of Braking

We briefly discuss a modification of our theory which permits us to estimate the
birthrate assuming the dipole braking model of pulsar evolution.

Let py (7, L) drdL be the observed density of pulsars with radio luminosity between
L and L + dL and age (1 = 1P|P) between 7 and T +- dr. If 7 is true age, then the
“velocity’ of pulsars along the = axis is 7 = 1. Therefore, the current J,. of pulsars
at an age 7 parallel to the 7-axis is given by

L= [ BOdena.

" As before J- is equal to the birthrate of pulsars in the agé range from 0 to = minus
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the deathrate in the same range. Once again, for better statistics, we average Jr from
Tmin to Tmax:

K Tmax
J(Tmin, Tmax) = E—— f Jo(7) dr. (18)
Tmin
An estimator of this quantity is
N

- K
Jr, est (Tmin, 7 max) = o) z S(Ly), Tmin < T X Tmax (19

(Tmax — 7 mm)_ -

==

Equation (19) is similar to the birthrate formula of Davies, Lyne and Seiradakis
(1977) except that we use individual scales for the pulsars and also introduce finite
Tmin Which is O in their analysis.

In Fig. 3 we have shown .7,-, ost in bins of 3 X 108 years. Since the error bars on

~ Jr, est are rather large, it is difficult to locate the plateau region with any confidence.
If we take the platean to extend from 0 to 6 million years, we obtain a birthrate of
0-0479% pulsar yr-1 galaxy~?, or one pulsar every 25145 years. Thisresultis consistent

with our earlier result (Section 2.5), suggesting that young pulsars upto 6 million
years of age may be evolving according to the dipole braking law. Fig. 3 shows a
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Figure 3. Plot of estimated mean pulsar current Jr o5t AgAiNst apparent pulsar age 7 = PP, Jp
. . has been averaged over age intervals of 3 million yea’rs. Error limits are specified at a 95 per cent
confidence level. Ji definitely drops from the first to the third bin, although J; in the second bin is.
not determined clearly. There is no detectable change in J; for bins of higher apparent ages.
Scale values S(L) have been used. ' ~
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significant drop in the value of Jr est after 6 million years. " This suggests that,

beyond 6 million years, either pulsars could be dying or the relation, age = } P/I5,
may no longer be valid (say, due to magnetic field decay).

2.7 Importance of Radio Luminosity Selection Effects

Is the radio luminosity selection effect important for the computation of the birth-
rate? We can answer this by comparing the birthrate of Section 2.5 with a second
calculation where all pulsars are weighted by a single average scale (S(L)}.
Equation (6) would then become

N
K (S

P, Pmin <Pi < Pmax. 20)
(Pmax-—'Pmin) L i min x41i max (

jp, est (P min, P max) =

‘We have made a thorough statistical comparison of the currents calculated by equa-
tions (6) and (20) on the basis of which we can state with greater than 80 per cent
confidence that the two quantities are not the same. The analysis of Section 3 rein-
forces this statement with much greater confidence. We are therefore quite certain
that radio luminosity selection effects are vitally important and should not be
neglected. This calls for a re-examination of all earlier analyses of pulsar data.

3. Luminosity-model approach
3.1 Introduction

In Section 2, we computed the pulsar birthrate from 7, p, est (equation 6) using the
scale factors S(L) derived from the observed radio luminosities. Since the values of L
are spread over four to five orders of magnitude, S(L) is spread over a similar range.

This results in a high variance for fp, est- In this section we have used new scales
whose variance is smaller. This we have achieved by modelling the dependence of radio

Iuminosity upon P and P as specified in equation (1). We have thus derived ‘ mean’

radio luminosities L’ which have a ‘smooth’ dependence upon P and P, in contrast
to the old L values. Furthermore, we have allowed for the fact that, at a given P

and 15, there is a distribution of L around L'. Using this distribution we calculate a

mean scale value S'(P, 13) at any P and P The scatter in these new scales is reduced
from five to three orders of magnitude. Consequently, there are much smaller statis-
tical errors in the new estimates for the birthrate and other quantities. On the other
hand, the assumed luminosity model could lead to systematic errors.

From a detailed analysis of the pulsar current Jp, we reach the important conclu-
sion that a significant fraction of pulsars are  born * in the period range 0-5s to 1-0s.
This result, which we describe as * injection’, could have strong implications for
theories concerning the birth of pulsars, their radiation mechanism and their

evolution in the P-P diagram. We have approximately identified the area of the P-P
diagram where injection is the strongest, and have suggested a possible explanation.
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- Finally, we have derived a mean value for the braking index of pulsars. We find
it not inconsistent with the values in current use.

3.2 Model for Luminosity Correlations

We have fitted a least squares plane to the data of log L against log P and log P avail-
able for 242* pulsars to obtain the ‘ mean * luminosity L’ (see equation 1) in the form

L (2, p) oc. P—0:86(:0.2) P0.38(+0.08) - _ 1)

Where the numbers in brackets represent lo errors, computed in the usual way for
correlated parameters. Lyne, Ritchings and Smith (1975) did a similar exercise and

obtained L' oc P-1-8 p0-88_ However, they did not fit a least-squares plane but in-
stead arrived at their result by maximizing a correlation coefficient between L and a

known function of P and P. This may explain the discrepancy between their results
for the exponents and ours. To check this we fitted a least squares plane to the data

of 84 pulsars used by them and obtained L' oc P—78(£:30) P-36(x-11) which is con-
sistent with our result in equation (21).

We now make the crucial approximation that the observed density distribution of
pulsars £y(P, P, L) can be separated into the product of two functions in the form

Po(P, P, L) = p,(P, P) P, (log L — log L (P, P)) (22)

where P, is the density of pulsars in the P~P plane, P, is normalized to 1 and L'(P, P)
is defined in (21). We are thus assuming that the distribution of log L is the same at
all points in the P-P plane except for the shift given by log L'(P, P). We have made

the following sensitive statistical test of this hypothesis. We divided the P—P plane
into four quadrants, each containing approximately the same number of pulsars.

In each quadrant we separately- tabulated the values of [log L — log L'-(P, 15)] of
the observed pulsars. Taking five bins in this variable, we carried out a x2-test to
verify that the distributions in the four quadrants are the same. We obtained a x*
value of 13-6 while the number of degrees of freedom of the test is 12. There is thus
very good statistical evidence for supporting the hypothesis in equation (22).

Equation (22) can be written'in the equivalent form
Po(P, B, L) = (P, P) p(LIL' (P, P)) 3 | (23)

?vhere again p, is normalized to 1. The mean scale factor S’(P, 13) at a given (2, 15)
is then obviously given by ‘ ‘ (

§'®, P) = | o @it @, B) s @) dL | - 1Y)
0 .

:13:?11 date, P values have been measured for 256 pulsars. But L values are not available for 14 of
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where S(L) is the old scale factor defined in Section 2.2. . §'(P, }5) can be approxi-

mately calculated in terms of the data on the 242 pulsars (for which P, P and L are
available) by means of the expression ‘

242
. 1 3
S@.F)= 555 > SE(P.P) 25)
j =1
where
¢(P, P) = L' (B, P) L,jL’ (P,, ). - 26)

We have computed S'(P;, Pi) for each of the 185 pulsars in the pruned list (of 210

pulsars) for which P, are available and these have been used in the calculations
discussed in the rest of Section 3.

To summarize, in this section we calculate the scale factor of a pulsar, not in terms
of its observed luminosity but in terms of the expected distribution of luminosity at the

particular values of P and P. At the heart of this approximation is the basic assump-
tion (equations 21 and 22) that the luminosity distribution is the same at all P and P

except for the scaling by L'(P, 13). We are convinced of the validity of this assumption
on the basis of the statistical test that we have conducted. With the new scales

S'(Py, P.i) we are able to make a much more thorough analysis of the data than was
possible in Section 2 with the old scales S(L;).

3.3 Pulsar Birthrate

Using the new scales, equation (6) becomes

N
K

- S'(P,, P) P,, Prin < Pr < Ppax. (27)
min) . .

J fu, est (P min, Pray) = (Pmax
i=1
We have plotted J}, est I Fig. 4. Comparison with Fig. 2 shows that the new scales
have significantly improved the error limits. The plateau appears to extend from
P =0.5sto P = 1-5s. The mean value of }}’,’ est I this range is 0-04819-044, giving
a birthrate of one pulsar every 21*§ years in the galaxy. This is consistent with the
number derived in Section 2.5, but has much smaller error limits. It now becomes
meaningful and interesting to compare our estimated pulsar birthrate with the
supernova rate. o ' (

Unfortunately, a reliable estimate of the supernova rate is not available. It is
obtained both from direct observations of supernova explosions in external
galaxies -and from a study of historical supernovae and SNRs in our galaxy.
Estimates from studies of external galaxies range right from one explosion in 359

~ years (_Zwicky 1962) to one every 11 years (Tammann 1977). Studies of historical

supernovae in our galaxy have yielded one explosion every 30 years (Katgert and
Oort 1967; Clark and Stephenson 1977). Studies of SNRs in our galaxy have given
one explosion every 60 years (Poveda and Woltzer 1968; Milne 1970; Downes 1971).

. A—8
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Figure 4. Same as. Fig. 2, but with improved scale values S” (P, P) derived from P and P. J »

increases in the second bin, drops only marginally in the third, and drops significantly in the fourth
bin, closely following Fig. 1(a). .
However, a recent work (Srinivasan and Dwarakanath 1981) on SNRs has estimated
that supernova explosions in the Galaxy occur once every 25 years. If we accept
this niumber, there is no significant discrepancy between the Jbirthrates of pulsars and-
supernovae. N - , ‘

. The dramatic reduction, in the error limits from equation (6) to equation (27) is

easily understood. - Both S(L;) and Pi in-(6) vary over many orders of magnitude
(almost independently). On the other hand, as a consequence of the luminosity model
which we have introduced, S'(P;, P;) varies approximately as P~/% and is therefore
anticorrelated with P. Thus the range of values in the summation in equation (27)
s several orders of magnitude less than in equation (6), leading to much improved
statistical significance. Another way of stating it is that the effective number of pulsars

contributing, to equation (16) [computed by ‘the.approximate. e,xpression”(vB‘/_ch)Z] is

only 6 while it is nearly 60 for equation (27).
- 3.4 Injection

We now discuss a very important result of our analysis. We see in Fig. 4 that J. 3 est IS
significantly higher in the second bin, compared to the first. The mean value is four
times higher and even the 95 per cent lower limit in bin 2 is higher than the 95 per cent
upper limit in bin 1. It is clear that such a situation can arise only if some pulsars
make their appearance in bin 2 without ‘flowing > through bin 1. In other words,
some radio pulsars are apparently being ° born’ in the period range of 0-5to 1-0s. We
have verified that this * injection ” is not sensitive to the particular choice of bin size.
It is also not an artifact *of the new analysis with S'(?, P) since there is.compelling
evidence for injection even in the rigorous analysis of Section 2 (see -also Fig. 1 of
our earlier publication; Narayan and Yiyekanand 1981). ‘ .

.

-In order to understand the details-of injection,-we ‘have subd1v1dedeachbmm

Fig. 4 into ‘three further bins in P. The estimated mean current Jp.in. the various

bins are shown in Table 1, along with the 95 per-cent confidence-limits in:some cases."
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Table 1. Estimated mean pulsar current J P, est- in various bins of the PP diagram: The 95 per
cent upper and lower limits to the current are also specified in the 1mportant bms P is in units of
seconds, and P in units of seconds per second R

00<P<05 0:5<P <10 1'0<1.,°<,1'5 15 <P <20

Ix 108 <P <l x 10 0042888 -0275E9 01698 0027
1x 108 <P <1 X107 0067588l -0120£:%%%  -0133%3% 0025
1 ‘><, 0vgP<1 ‘>< 1075 -0613 0028 0037 0018

There seems to be strong evidence that injection occurs at high values of P in the
period range 0-55 to 1-0 s ‘and possibly even in the 1-0sto I'5 s range. We have
outlined this high injection region by means of the box in Fig.'5.

The injected pulsars are unlikely to be the ‘recycled’ pulsars formed in massive
close binary sysiems (de Loore, de Greve and de Cuyper 1975) because of the
following reasons.

(a) Even if all pulsars are born in massive close binary systems, the recycled pulsars
cannot be more than 50 per cent of the total populanon A more realistic estimate
based on the actual number of such binary systems (van den Heuvel 1977) would be

a few per cent. But the 95 per cent lower bound of J. P, est in bin 2 (Fig. 4) is more
than twice the 95 per cent upper bound of J P, est I bin 1 indicating that much more
than 66 per cent of the pulsars are injected.

(b) There is no compelling reason to expect predommantly high values of P in

such pulsars. On the contrary, low values of P are likely to occur if the magnetic
field of pulsars decays on a time scale of =~ 5 x 108 years, which is the estimated time
between the two explosions (de Loore, de Greve, de Cuyper 1975). Injection, on

the other hand, occurs at high values of P as shown by Table 1.

Having rejected the ‘ recycled ’ pulsars, another possibility is that neutron stars
may be born with large periods of the order of 0-5s. However, it is widely believed
(see, for example, Manchester and Taylor 1977) that there are some theoretical diffi-
culties in getting stars to shed most of their angular momentum either before, during,
or shortly after collapse (into a neutron stat). Therefore we may expect neutron
stars to be born with periods of the order of tens of milliseconds. There appears
to be some observational support for this, in that at least a certain category of pulsars
(i.e. those which are not injected) are born withsmall periods, viz. the Crab and Vela
pulsars*. Therefore, we may expect the injected pulsars also to start their careers
with low periods, say 10 ms. Now, the dipole model of pulsar braking would predict
(in the absence of magnetic field decay) that the pulsa.rs in the injection box in Fig. 5

would Have had initial Pvalues & 5 X 10712 s-I which is an order of magnitude more
than the P of the Crab pulsar. It is. therefore surpnsmg that we do not see more
pulsars with small values of P and high values of' P ‘

*Incidentally, smce the 1njected pulsars form the bulk of the pulsar population, the Crab and Vela
pulsars are by no means prototypes of young pulsars. - :
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‘A closé examination of Fig. 5 shows that ‘there is apparently an abrupt cut-off
of pulsars above a certain value of P. We have made the following statistical test
to determine whether the scarcity of pulsars at high values of P is indeed signiﬁcant.’
We tentatively placed the cut-off line at log P = — 12:5 (Fig. 5). We assumed a
dipole braking model without field decay (which. is reasonable for this part of the
P-P diagram), and a pulsar ‘ death’ line of the form P P-5 = constant (Ritchings,

' 1976 has shown that at small values of P P-5, pulsars spend increasing lengths of
time in the nulled state, apparently asa prelude to ‘death). Assuming the period at
birth to be 10 ms, we computed the birthrate of pulsars in various bins of P using the
observed sample of pulsafs and the scale factors S'(P, 15). We then evolved the pul-
sars according to the dipole braking model and computed the number of pulsars we
should have observed above the cut-off line. This turns out to be 6:6 pulsars.” Since
some of these might have been missed by the various pulsar surveys due to their
having very low periods, we also computed the expected number of pulsars above the

cut-off line with P > 100 ms. Our calculations show that we ought t0 have seen
2-9 pulsars'in this region whereas we actually se¢ none. We can therefore state with
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94:5 per cent confidence (100-{1 — exp (— 2:9)}) that there is a genuine . deficit
of pulsars above the cut-off line in Fig. 5. We have verified that the above results
are not very sensitive to the exact location of either the cut-off line or the death line.
However, we cannot reject the possibility that the injection line is actually a more
complicated curve than a single horizontal line. For instance, the distribution: of
points in Fig. 5 might suggest a line with negative slope in the period range from 0

to ~ 0-3s and a second line with positive slope beyond 0-3 s at the top of the P-P
dlagram there could also be an injection line with negative slope at the left of the

P—P diagram. Some of these possibilities have been-discussed by Radhakrishnan
(1981) on the basis of an interesting model.

We would like to offer the following tentative explanation of injection. Itis possxble
that neutron stars do not radiate in the radio region 1mmed1a.1:ely on birth but do so

later in their life. We suggest that neutron stars with P greater than the critical value
are unable to radiate in the radio. They switch on as pulsars when their P decreases
to the appropriate value. Therefore, neutron stars with initial P values above the

cut-off line will ‘ enter * the pulsar P-P diagram at higher periods, thereby giving rise
to injection. At present, we have no theory or mechanism of pulsar radiation which
could explain an upper cut-off line in P. This is currently under investigation..

~ The above scenario also explains why there are so few pulsar-SNR associations.

Our data suggests that pulsars could spend ~ 10¢ year or more above the cut-off line.

If SNRs dissolve into. the interstellar medium on time scales comparable to the
switching-on times of pulsars (there is good evidence for this in the work of Srini-
vasan and Dwarakanath 1981), there would be very few observable associations
between pulsars and SNRs. As mentioned earlier, in this picture we also require
that neutron stars should cool rapidly after birth to avoid radiating thermal X-rays.

3.5 Braking Index ’
The braking index n is defined by the equation ) o
ﬁ oc—Q" - | ‘? 1 (28)
where the angular velocity = 27 [P. In the dipole brakiné theory, n = 3. The

age T of a pulsar, assuming the initial period to be 0's, can be \,xpressed in terms of
the braking index as

1 P_ 7

= — 29
m—Dp @—D )

where 7' is the characteristic time, Pll:“ The ¢ velocity * of a pulsar parallel to +' is
7' = (n'— 1). Hence, the mean pulsar current parallel to 7’ can be written, asin earlier
sections, as

- K ) . . ;
J 7', est (T'min,, T{ma)_(’) = ml—n’j z(n: —1) S (P i» B), 7 min <P /Py <7'max. (30)

i=1
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If we define (n) as the mean braking index-of the pulsars in the 7' range defined
in equation (30), then the equation can be written as : C

. , N.
S, KD S
J'r', est (T'min, T max) =‘(1.rmax — i) S Py, Py)

o -

=n)—1 X (' min, 7 max)s 7' min < Pi/P; < 7'max- (31)_
‘We have plotted X (*'min, 7'max) In bins of 2 million years in Fig. 6. - The curve
appears to be essentially constant (barring the fluctuation in bin 3) up to about 12X 108
yr, and falls thereafter. If we assume the dipole model and take the age as T2,
then it would appear that up to about 6 10° yr, the current is constant. Incidentally,
in terms of 7/, injection occurs below 10° yr and can therefore be neglected in the
discussion here. B _ , _ o o
Since the histogram in Fig. 6 does not change from ' =0 to 7' =12 X 108 yr,
this strongly suggests that the mean braking index (n) is essentially constant in this
range. Moreover, one can further conclude that there are probably no significant
“pulsar births or deaths. By an argument similar to that in Section 2.2 one therefore

arrives at the in’ceres'tiilgt result that Jr/ est (0, 12 X 108 yr)should be comparable to the
‘birthrate B of pulsars. Since we have an independent estimate of B in Section 3.3,
we can therefore use equation (31) to obtain an estimate of (n). We- obtain
(n) = 3-7+88 where the error limits are the 95 per cent confidence limits. It is
interesting that -our independent: estimate of (n), based only on observational
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data, is fairly consistent with the dipole model value of 7 = 3. Incidentally, if we
assume the death line of R1tch.1ngs (1976), it will be seen that some of the high
magnetlc field pulsars would die at 7' values smaller than 12 X 108 yr. In that case

Ji,- , est (0, 12 X 108 yr) would be smaller than B and the above value of { n ) would
be an overestimate. This strengthens the argument in favour of dipole braking in
young pulsars (with ages upto 6 X 108 yr),

The braking index has been measured 1ndependently only for the Crab pulsar
(Groth. 1975), yielding the value 2:515. We do not consider this to be inconsistent
with our { n ) because; by our results, the Crab belongs to a minority class of un-
injected pulsars. Further, we have estimated only the mean braking index for the
whole pulsar population. We have no information on the individual va.rra!uons in
n from one pulsar to the other. - : :

4. Conclusions

We may 1dent1fy the following. 1mportant sources of error in our calculatlons .'

(a) All our results are based on the observed pulsars, Since the observed sample
could differ from the true distribution due to sampling fluctuations, there are statisti-
cal uncertainties associated with our numerical results. We have estimated these on
a Poissonian assumption and quoted them as 95 per cent conﬁdence hnuts wherever
applicable.

(b) We have assumed the beammg factor K to have a value 5. However, the true
value could be significantly different (e.g. Kundt 1981).

(c) We have taken the mean interstellar electron density », to be 0-03 electrons cm=-3,
Since this is used in all distance calculations, it is a highly important input. There
could be some uncertainty in the value of n, though the value we have adopted is
generally accepted as a good estimate over a large portion of the galaxy.- Fluctuations
in n, in different parts of the galaxy could also contribute to the error.

(d) The calculations in Section 3 critically depend on the luminosity model, equa-
tions (21) and (22). This could introduce some error in the results. However, since
all the major conclusrons of Section 3 are consistent with the results of Section 2
where no model is assumed, we believe this error is quite small.

(¢) There may be some errors in the computed scaling factors S(L;) and also in
the manner of pruning the data, arising from possible faulty interpretations of the
parameters and selection effects of the three pulsar surveys.

Of the above, errors (d) and (¢) arc probably not very srgmﬁcant “Errors of the type
(a) can be calculated and have been quoted throughout. Errors (b) and (c) have not
been estimated though they could be quite large. These errors are ‘present in all
earlier analyses. of pulsar data as well. It is also important to note that among our
major conclusion listed below, errors (b) and (c) affect only our estlmate of pulsar
‘birthrate and have little or no bearing on the rest. .

The main conclusions of our study are: :

(a) A significant fraction of pulsars are born with initial perrods >~ 500 ms. There-

fore the conventional picture of pulsar ‘evolution in the P—P diagram may require
significant modifications. The injection of pulsars at high periods should: be related
to the physics of pulsar rad1o emission. We suggest that neutron stars probably
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switch on as pulsars only when log P < — 12:5. This hypothesis would also explain
the lack of SNR—pulsar associations. Our demonstration of injection is based on
the rigorous, model independent calculations of Section 2 (see Fig. 2), Section 3
serving as a confirmation. Moreover, the result is independent of the particular
choice of K and n,. .

(b) The birthrate of pulsars is estimated to be 0-0483-01{ (one pulsar every 2118 yr),
which appears to be consistent with the rate of supernova explosions if (i) every
explosion results in a neutron star, and (i) every neutron star becomes a pulsar some-
time in its life. Our estimate is really a lower bound, but we expect it to be close to the
actual birthrate because the ‘plateau ’ in Fig. 4 shows some resemblance to Fig. 1(a).
However, it should be noted that our result depends upon the values chosen for K
and n,, neither of which is known with great precision.

(¢) The number density of pulsars in the P-P diagram is significantly affected by
radio luminosity selection effects which cannot, therefore, be neglected in studies of

pulsar evolution in the P-P diagram, birthrate studies, etc. This, coupled with the
injection which we have demonstrated, would cast doubts on earlier analyses of
pulsar data. A complete re-examination is called for.

(d) The mean braking index of pulsars is estimated to be 3-7 +02, this value being
probably an overestimate. Hence the dipole braking model value of # = 3 is prob-
ably close to the truth. Also, 7 =%P/P appears to be a good indicator of pulsar age
upto 6 X 108 yr, which might be a lower limit for the decay time of the magnetic

field or possibly the age at which pulsars begin dying. These results do not depend
upon our choice of K and #,.
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Appendix A
In various sections of this paper, we are interested in evé,luatihg quantities of the form
0= [ xp(x)dx | ) (32

where x is some property of pulsars and p(x) dx is the probability of observing a
pulsar having a value of this property in the range xto x -+ dx. For instance, in

Section 2(b), x = PS(L), in Section 24, x = S(L), etc. We estimate Q by means of
the following sum over the X; of the observed pulsars.

N . ' s ,
Qest = z X : " - (33)
' Ci=1 . E . o . . ’ ) .
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Now, the probabilities of observing pulsars in different ranges of x are independent
of one another. Hence, Q in equation (32) is the weighted integral over independent
Poisson variables (of mean p(x) dx). The variance of Q is then clearly given by

V= f x? p(x) dx. (34)

This can be estimated in terms 'of the observed pulsars by means of

N
i=1

which is the formula used throughout the present paper.
The form of V in equation (34) is differenit from the following more usual form

Vo= f (x — X)2 p(x) dx

= [ % p(x) dx— & [ p(x) dx | (36)

The difference arises because the vanance in the present case (equation 34) has two
contrlbunons
“(a) There is one contribution arising from the distribution of values of x, giving an
expression exactly of the form equation (36).
(b) Secondly, being a Poisson process, the total number of observed pulsars

N = J' p(x) dx - . (37

can itself fluctuate i.e. there can be fluctuations in the number of terms in equation
(33). 1t is easily verified that this contribution cancels the second term in equation
(36), leading to equation (34). '

~Appendix B

If an H 11 region lies along the line of sight to a pulsar, it contributes to the dispersion
measure (DM). Since pulsar distances are derived using DM, the H 1 region contri-
butions must be subtracted. Prentice and ter Haar (1969) have given a scheme for
estimating the corrections. However, their results might be inaccurate because of
unknown parameters, such as the Strémgren radii and electron densities of the Hn
regions. The inaccuracies could be particularly serious if the H 1 region contribution
is a major fraction of the pulsar’s DM. Therefore, we have * softened > the Prentice-
ter Haar correction using the following scheme.

We postulate that the dispersion measure correction of an H 1t region has a rect-
angular probability distribution as shown in Fig. 7 where H is the correction given
by Prentice and ter Haar. We average the calculated distance to the pulsar over this
probability distribution and use the averaged distance in our studies. Let d be the
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Figure 7. Assumed probability distribution of the dispersion measure correction (H) due to H 1t
regions.

DM left to be accounted for just at the front face of the H n regions. It is easy to see
that whenever d > 3H|2 or d < H|2, the present scheme gives practically the same
distance as the old scheme (which directly used the single value of H). For the
case H[2 < d < 3H/2, the new scheme gives a larger estimate for the pulsar distance
than the old. A larger distance implies a larger estimate for the pulsar luminosity
L and hence a smaller estimate of the scale factor S(L). We are thus, in a sense, being

conservative and erring on the side of slightly underestlmatmg the quantmes
of interest. :

Appendix C

As already mentioned in the text, we expect the distribution of Qest (equation 33)
to be asymmetric, with a long tail, because only a few top values of X, usually con-
tribute to the result. Therefore we prefer to use confidence limits rather than the

standard deviation. In computing the confidence limits, we assume that our esti-
N

mator Qest = ¥ X is the sum of N random Poisson variables (v;) of mean equal
i=1

to 1, each weighted by the respective X;.

Qest = z v; Xi. : : . (37

d=1

By numerically generating N random variables between 0 and 1, we generate N ran-
dom Poisson variables with mean 1 and therefore a random value of Qest. By gene-
rating many random values of Qegt, We then estimate the probability distribution of
0. The confidence limits are then easﬂy marked off-by measurmg areas under this
probablhty curve. : :
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