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ABSTRACT
The application of the Maximum Entropy Method (MEM) to crystal structure analysis is
investigated. The phase problem leads to new higher order phase relations. Simple one-dimen-
sional simulations are presented where the method solves the structure from initial random

phases.
graphic applications.
the maximum determinant method

N many fields of experimental physics, one measures

the Fourier transform of the function of interest.
It also invariably - happens that only a part of the
Fourier information is available. Therefore, an impor-
tant problem is to extract the maximum information

possible about the function of interest from partial.

Fourier data. Among the many schemes that have
been developed for this, the so-called Maximum
Entropy Method (MEM) has evoked much interest in
the fields of geophysics'* and radio astronomy?.S,
In this paper we suggest that the MEM could be gain-
fully applied to the phase problem of crystal structure
analysis. We argue that, in many respects, the MEM
is ideally suited to crystallographic applications. We
present some simple, one-dimensional simulations to
bear this out.

We first review briefly relevant features of the MEM,
Let p(r) be a real scalar function of a many-dimen-
sional vector r. Let p(r) be either (a) non-zero over
only a finite closed volume or (b) periodically repeated
over a space lattice. In either case, the Fourier trans-
form of p (r) is completely specified by giving its values
F,,ata discrete lattice of points h, in reciprocal space.
By definition

= [ p(r)exp (th, r)dv,
which leads to the inverse relation
1 .
plr) = 7 z F,., exp (— 2gifyy.r); hyon alattice
r
L]

(1)

@

where V, is the volume of the * unit cell” of p(r).

Let us suppose, as is the case in many applications
in geophysics and radio astronomy, that F, ; is available
both in amplitude and phase at some of the h; but is
unknown at the rest of the points. A smxple-rmnded
approach would set the unknown Fy; to zero and com-
pute p (r) through equation (2). The resultant function

.would generally suffer from loss of resolution and
would also have termination ripple. The MEM instead

It is argued that the peak-seeking nature of the MEM is ideally suited to crystallo-
It is suggested that there is an intimate relation between the MEM and

'

‘prescribes that the unknown F,, should be chosen so
as to maximise the “entropy” S defined below.

S= [ Flp(av,. ©)
F is a suitable real function of p (r) whose properties
are discussed later. Substituting (2) in (3) and diffe-
rentiating with respect to the unkrown Fy;, one
obtains that

f F'lp(rexp (— 2k r)dV, =0

for unknown F, ; @)

where the prime denotes differentiation with respect
to the scalar argument. If G, are the Fourier cocffi-
cients oi F’[p(r)], eq. (4) unphes that

G,; =0 for unknown F, . (5)

We note that egs. (5), which are well known?, gene-
rate as many conditions to be satisfied as there are
unknowns. For a suitable choice of F, the solution
is unique®®, Iterative numerical algorithms car on

“*developed® which seek to achieve the conditions jn-
-~(5). In general, the MEM solution generates n gbe

zero values for the unknown F,,. Thus, one rec n-
structs a p (r) with lmpl‘OVed resolutlon as well as
reduced ripple. -

The results of the MEM depend on the choice of
the function F. The following propertxes of F have
been identified as crucials :

(@) F” should always be negative,

() F””’ should always be positive.

Traditionally, the following two forms of entropy
have been studied, both of which satisfy the above
requirements :

@  Si= {4V,
By (5) tlus leads to the result that [p ()} is * band-
limited *, i.e., {p (r)]* has only a finite numbcr of non-
zero Fourier coefficients (they are in fact located at the
hj corresponding to the measured F,,,).
@ Si=—[p()Inlp(rav,.
This requires that In[p(r)] be band-limited.

()
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The MEM as developed so far cannot be directly
applied to crystal structure analysis because of the
phase problem. It is therefore necessary to generate
new conditions, in addition to (5), corresponding to
the unknown phases. Substituting (2) in (3) and
differentiating with respect to the unkoown phases of
the measured amplitudes, one obtains

f Flp( [Fy, exp (— 2zihy.r)
— Fy exp (2zihy.r)]dV, =0, @®
where we have employed the property that F), 5 and

F_,, have opposite phases as a consequence of p(r)
being real. Eq. (8) leads to the result that

Gy, Fy; — GyFop, =0, o)

Since p(r) and F'[p ()] are real, inversion related
Fourier coefficients are complex conjugates of each

other. Hence ‘
Gy Fy; = (G 5y )" (10)
This implies that G_y,Fy, is real dnd therefore
ph (F,) — ph (G,)) =0 or = (1)
where “ph’ means *the phase, of”. Egs. (l1)

generate one phase. relation corresponding to every

unknown phase. It is possible to introduce egs.
(11) into the numerical algorithm proposed in Ref. 6.
We can thus implement the MEM in problems of
crystal structure analysis.

We have carried out simulations on simple one-
dimensional ‘structures” using the “‘entropy” S,
defined in (6). Typical results on a centrosymmetric
and a non-controsymmetric structure are shown in
Figs. 1 and 2. In both cases, the algorithm was
initially given the correct amplitudes of the structure
factors and random phases. As it hadpened, the
initial random phase map of the non-centrosymmetric
structure was nearly centrosymmetric and vice versa
[Figs. 1(b) and 2(b)]. The converged solutions
[Figs. 1 (c) and 2 (c)] are suprisingly close to the true
structures. There is, of course, an origin shift in
both solutions and the absolute’ configuration of Fig.
2 (¢) is opposite to that of 2 (a). These arise because
of the random nature of the initial phases.

Jt should be noted that all centrosymmetric func-
tions automatically satisfy the phase relations (11).
Therefore, to obtain non-centrosymmetric solutions,
it is necessary to take suitable precautions. These
details, as well as the algorithm employed, are being
published elsewhere.

Fic. 1. (a) Model one-dimensional centrosymmetric
_structure. (b) Structure with the same Fourier ampli-
tudes as in (g) but random. phases. () Result of the
MEM algorithm- starting with ®).

X
FiG. 2.. (a) Model one-dimensional non-centrosym-

metric structure. (b) Structure with the same Fourier .
amplitudes as- in- (g) buf' random phases. (c) Result
of the MEM algorithm ‘starting with (b). :



The general experience of the authors® with the
MEM is that it is ideally suited for certain classes
of applications. Whenever p(r) is close to zero
(or any constant value) over a large range of r and
is positive and “peaky” c¢ver a relatively smaller
range of r, the restorations obtained with the MEM
are very good. In particular, the positions and (to a
lesser extent) the strengths of peaks are reproduced
very well. On the other hand, the shapes of the
peaks are usually not reliable. Also, if p(r) has
“ plateaus ” i.e., fairly extensive regions of approxi-
mately constant ‘height”, the MEM restorations
have excessive ripple on the pilateaus.

It is remarkable that the weaknesses of the MEM
are quite immaterial for crystallographic applications.
What is important in crystal structure analysis is the
ability to pinpoint the positions of the peaks, and this
is precisely what the MEM is most efficient at (once
the peaks have been identified, chemical information
and least squares usually take over to refine the
structure). This coupled with our earlier experience®s®
leads us to believe that the MEM is ideally suited
for crystal structure analysis. Figs. | and 2 support
this view. We should mention that reconstructions
from radio astronomical data without phases have
been presented by Gull and Daniell® using S, and
the method of least squares.

Tn the one-dimensional case, it has been noted®?s
that maximisation of S, is equivalent to maximising a

certain determinant built up from structure factors.
This is strongly reminiscent of the maximum deter-
minant rule'® ' which has been studied in connection
with the phase problem. We are currently investi-
gating this relationship.
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