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Abstract. For accretion on to neutron stars possessing weak surface
magnetic fields and substantial rotation rates (corresponding to the secular
instability limit), we calculate the disk and surface layer luminosities general
relativistically using the Hartle & Thorne formalism, and illustrate these
quantities for a set of representative neutron star equations of state. We also
discuss the related problem of the angular momentum evolution of such
neutron stars and give a quantitative estimate for this accretion driven
change in angular momentum. Rotation always increases the disk luminos-
ity and reduces the rate of angular momentum evolution. These effects have
relevance for observations of low-mass X-ray binaries.
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1. Introduction

Disk accretion on to a neutron star possessing a weak surface magnetic field (B < 108 G)
provides interesting X-ray emission scenarios, and is relevant for understanding X-ray
bursters and low-mass X-ray binaries (e.g. van Paradijs 1991). Such weak-field neutron
stars can rotate very rapidly and are also seen as millisecond pulsars (Radhakrishnan
& Srinivasan 1982; Alpar et al. 1982; Bhattacharya & van den Heuvel 1991) and may be
relevant for quasi-periodic oscillators (QPOs) (Priedhorsky 1986; Paczynski 1987). The
equation of state of neutron star matter as well as general relativity play essential roles in
such a scenario. This is in contrast to the strongly magnetic (B 2 10'* G) accreting
neutron stars, where plasma processes dominate (e.g., Ghosh & Lamb 1991). For the
weak-field case, the radius of the innermost stable circular orbit (r,,,) plays a central
role, deciding quantities of observational interest such as the disk Iuminosity. The
relevance of this parameter (r,,) was emphasized by Kluzniak & Wagoner (1985,
hereafter KW), who pointed out that for weak-field accreting neutron stars it is
incorrect to always make the usual assumption that the accretion disk extends very
close to the surface of the star, and is separated from it by a thin boundary layer. Using
Schwarzschild geometry, Syunyaev & Shakura (1986, hereafter SS) concluded that the
boundary layer brushing the neutron star surface will be substantially more X-ray
luminous than the extended accretion disk. If the star’s radius (R) is less than r,, the
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boundary layer is likely to be characterized by poorly collimated tangential motion of the
infalling matter and a comparatively soft emission spectrum. Whether or not R exceeds
Toro (and consequently the detailed features of the accretion scenario) depends on the
geometry of the spacetime and also the equation of state of neutron star matter.

Animportant aspect of disk accretion on to weak-field neutron star is the possibility
that the neutron star will get spun up to very short rotation periods (< millisecond)
over a time of the order of hundreds of millions of years. For such rapid rates of
rotation, the relativistic effect of dragging of inertial frames in the vicinity of the neutron
star will be important. This effect will alter the trajectories of infalling particles as
compared to the non-rotational case. Therefore, for a quantitative description of the
accretion features, one must take into account the relativistic effects of rotation upon
the spacetime geometry. Although the possible importance of such effects was stressed
by KW and SS, the details were not worked out by them.

In this paper we address this question and calculate the disk and surface layer
luminositiesincorporating the rotational effects in a general relativistic framework. We
take the spun up neutron star to be rotating at a particular value, namely, the secular
instability limit so as to illustrate the maximal reasonable effects of rotation. This
corresponds to the late stages of accretion. We use the Hartle & Thorne (1968; hereafter
HT) formalism, for our purpose; this formalism describes a rotationally perturbed
Schwarzschild space-time. The HT formalism is valid for strong gravitational fields but
only in the limit of uniform rotation with a rate that is ‘slow’ compared to the critical
speed for centrifugal break-up. Neutron star models rotating at the secular instability
limit (assuming the star to be homogeneous), relevant in the context of accretion
induced spun up neutron stars, are within this limit (Datta & Ray 1983), so this
approximation will usually be adequate. Recently Cook et al. (1994a & b) calculated
last stable orbits of rotating neutron stars incorporating higher order rotational terms
that go beyond the HT approximation. However, these authors did not use their results
to estimate the disk luminosity and angular momentum evolution involved in the
accretion scenario. Although the Hartle & Thorne prescription assumes rotationally
perturbed geometry, the use of this prescription provides a first estimate, which is
amenable to a straightforward numerical treatment, of the luminosity values and
angular momentum evolution for an accreting weak-field neutron star. This can be
quite useful in observational applications such as low-mass X-ray binaries. Our
calculations are done for a range of stable neutron star configurations computed using
a representative sample of the proposed equations of state of neutron star matter. We
also consider the accretion driven evolution of the angular momentum of the neutron
star in a more accurate fashion than was done by KW.

2. Accretion on to a rotating neutron star

To describe the spacetime around a rotating neutron star we use the metric suggested
by Hartle & Thorne (1968). This metric describes a rotationally perturbed Schwar-
zschild geometry to order Q%, where Q is the angular velocity of the star as seen by
a distant observer, The general form of the metric is (signature: + — — —)

ds? =g, dx*dx?, (a, B=0,1,2,3)
=e*°d* — (A — wdr)? — e2dh? — e2Ads? 4 OQ%/Q3). (1)
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Here w is the angular velocity of the cumulative dragging of inertial frames and
Q,=(GM/R?)?, the critical angular velocity for equatorial mass shedding, where
M and R are the mass and radius of the non-rotating neutron star. For simplicity, we

use the geometric units: ¢ = 1 = G. The metric components correspond to an interior
with the identification:

e =2 {1+2(h, + h, P,)), 2

e =r2sin®0{1 +2(v, — h,) P, }, A3)

e =r*{1+2(v,—h,)P,}, 4)
22 L+ 2(my+myP,)/(r—2m) -

¢“ = 1-—2m/r ’ )

(where 2v is the gravitational potential function for the non-rotating star and m is the

gravitational mass contained within a volume of radius #) and to an exterior with the
identification:

M 2
ez"’=e"“——~1——27+2{7, ()
e*! = r2sin?0, (7)
e =72, (8)

Here M’ and J are respectively the mass and angular momentum of the rotating
configuration of the star. The quantity P, is the Legendre polynomial of order 2, and
hy, hy,my, m,, v, are all functions of  that are proportional to Q2 (see HT). The metric has
the desirable property that the internal and external forms match at the surface of the
star. For our purpose here, we shall retain only the spherical deformation terms
(characterized by subscript 0) and neglect the quadrupole deformation terms (character-
ized by subscript 2). The latter are necessary for computing stellar quadrupole deforma-
tion, but average out in calculating the rotation induced changes to M and R. The
applicability of the metric (1) is valid for Q small in comparison to Q_, and to go beyond
that approximation requires a treatment similar to that of Cook et al. (1994a, b).

A relativistic effect of rotation, important for the astrophysical scenario that we
consider here, is the dragging of inertial frames, which implies

a(r) #Q, ©)

where @(r) is the angular velocity of the stellar fluid relative to the local inertial frame,
and is given by (HT)

d/,do\ ., d

- hahad = = 1

dr(r]dr>+4r a)dr 0, (10)
where '

jr)=e(1 —=2mfr)!’?, (11)

with the boundary conditions

(d__w) —0 a(r=00)=Q. (12)
dr r=0
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Forr > R(i.e., outside the star),
o) =Q-2J/r3, (13)

where J is the angular momentum of the star:

R*(dd
J= ?<_d_r>r=x' (14)

The equations of motion are derived from the Lagrangian corresponding to the metric

(1):
L =3{e*1? — 242 — 2402 — ¢ (¢ — wi)?}, (15)

where a dot represents a derivative with respect to proper time. We shall, for purpose of
illustration, take the polar angle (6) to be fixed and equal to /2, which corresponds to
the equatorial plane.

The metric (1) and the equations of motion provide three equations in the three
variables c/i, t, and 7. From these, we can get (see KW)

2 = B2 —2wET— h*(1 + 2/r?), (16)
where _

E =t + wr?d, (17)
and _ )

T=r*(¢ — wi), . (18)

stand respectively for the energy and angular momentum per unit rest mass (denoted by
my) and

h=(1—2M'/r)!2. (19)

The conditions for the turning point of the motion, the extremum of the energy, and
the minimum of the energy are respectively given by (see Misner, Thorne & Wheeler
1974)

E2=12, (20)
dE dv
and
d2E
57> 0, (22)

where Vis the effective potential, given by
V2 = 2wEl+ h*(1 + 2/r?). . (23)
For marginally stable orbits we can use the condition

$eE_ &y
dr2 7 d?

(24)



Disk Luminosity and Angular Momentum 361

Written explicitly, equations (20), (21), and (24) respectively become

~, Jak 1 a?

3jaE x?
2
- -0
T o R N (26)

x?—3a®x + 6(a®>—jaE) =0, (27)

where x = r/2M’, the dimensionless radial co-ordinate;j = J/M’? and a = [/2M’ are the
dimensionless angular momenta for the star and the infalling matter respectively.
Solving equations (25)~(27) simultaneously gives the values for the energy (E_,,,) and the
specific angular momentum (a,,, ) of the accreted particle in the innermost stable orbit
having a radius x = x_,,.

Using Schwarzschild geometry, it was shown by SS that an accretion disk whose
luminosity is small compared to the Eddington limit can exist only for R greater than
the radius of the last stable circular orbit, 3r,, where r, = 2M =the Schwarzschild
radius. For R < 3r,, the accreting matter falllng on to the neutron star will follow the

trajectory of a free particle in this geometry, with an energy equal to my, \/—_ . These
authors also gave estimates of the energy released in the disk and in the boundary layer
for R/r, ranging from 1-5 to 10 without reference to any specific equation of state model.
In the case where the neutron star has a high spin rate, the innermost stable orbit was
calculated by KW using the HT metric to describe rotating spacetime. These authors,
however, did not estimate the luminosity, and they neglected the rotational corrections
to M and R in computing the evolution of angular momentum.

For a low-field, accreting neutron star possessing substantial rotation, the luminos-
ity from the disk accretion can be calculated using equations (25)-(27). We use here the
notation x* = R'/2M', where M’ and R’ correspond to the neutron star mass and radius
that include corrections due to the rotation. The following distinct cases are possible:

2.1 Case(a): Radius of the star is greater than v,

If an accretion disk were to form around a relatively large neutron star (i.e., x* > x_,, ),
the ingress of a particle of rest mass m from infinity to the inner disk boundary will

release an amount of energy given by
Ep =my{l — E,(x*)}, (28)

where Ek(x*) stands for the specific energy of the particle in the stable orbit just above
the surface, obtained by solving equations (25) and (26) numerically for x = x*. The
energy loss in the boundary layer will be

Eg = my{E(x*) — E,(x*)}, (29)

where E o(x*)is the energy of the particle at rest on the surface of the neutron star, which
can be calculated from equation (25) for x = x* and the specific angular momentum at
the star’s surface.
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22 Case (b): Radius of the star is smaller than v’ ,
In this case, x* < x,,, and the accretion disk will extend inward to a radius correspond-

ingto x = x,,,.. Now the energy released in the disk as the particle comes in from infinity
to the innermost stable orbit will be

Ep=mp{l - E,}, (30)
and the energy released in the boundary layer will be
Eg=my{E o~ Eq(x*)}. (31)

A remark about the boundary layer luminosity formula that we use, is in order here.
Although this formula gives a plausible estimate for the boundary layer luminosity,
strictly speaking, it is an overestimate as it does not take into account the subtraction of
the energy that goes into spinning up of the neutron star. The need for such a correction
was pointed out by KluZniak (1987) and quantitative estimates for this were suggested
by Ghosh, Lamb & Pethick (1977), Papaloizou & Stanley (1986), and Kley (1991).
A fairly simple and general way to estimate the same was given recently by Popham
& Narayan (1995) who considered the accretion disk boundary layer problem in
cataclysmic variables. Significantly, these authors have stressed that most ‘of the
decrease in the boundary layer luminosity will occur in the early stages of spin-up, when
the star is rotating slowly, rather than the late stages when it is approaching limiting
break up rotation rates. The scenario that we consider in this paper corresponds to the
latter stage. Therefore, for our purpose, the formula for the boundary layer luminosity
that we have used is expected to be adequate. This point is elaborated in §4.

3. Equation of state and rotation-induced changes in structure

The structure of neutron stars depends sensitively on the equation of state at high
densities, especially for density regions > 10'*gcm ™3, There is no general consensus
on the exact behaviour of the equation of state at these high densities. For our purpose
here we choose the following six equations of state: (1) Pandharipande (N) (neutron
matter) model, based on the lowest order constrained variational method using Reid
potentials (Pandharipande 1971a); (2) Pandharipande (Y) (1971b) hyperonic matter; (3)
Bethe-Johnson model V (N) for neutron matter (Bethe & Johnson 1974) which uses
improved phenomenological potentials; (4) Walecka (1974) model for neutron matter,
using scalar-vector interactions in a field theoretical framework; (5) Wiringa
UV14 + UVII model for neutron-rich matter in beta equilibrium —a variational
calcylation incorporating the three-body interactions (Wiringa, Fiks & Fabrocini
1988); and (6) neutron-rich matter in beta equilibrium, based on the chiral sigma model
(Sahu, Basu & Datta 1993). Of these, models (1) and (2) are ‘soft’ equations of state and
(4) and (6) are rather ‘stiff” ones, while the models (3) and (5) are roughly intermediate in
‘stiffness’.

The composite equation of state to determine the neutron star structure was
constructed by joining the selected high density equation of state to that of Negele &
Vautherin (1973) for the density range (10'*—5 x 101°gcm™3, Baym, Pethick
& Sutherland (1971) for densities down to ~ 10° gecm ™3 and Feynman, Metropolis &
Teller (1949) for densities less than 10° gcm ™ 3.
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For a fixed central density (and a chosen equation of state model), the fractional
changes in the gravitational mass (AM/M) and radius (AR/R) of the neutron star due to
the rotation induced spherical deformation are proportional to Q2 (Q is the angular
velocity of the star as seen by a distant observer), and can be (numerically) obtained from
aknowledge of the radial distributions of the mass and pressure perturbation terms, my(7)
and p,(r) (HT; Datta & Ray 1983; Datta 1988). The non-rotating mass (M) and radius (R)
are obtained by numerically integrating the relativistic equations for hydrostatic
equilibrium (see e.g. Arnett & Bowers 1977). The changes AM and AR are given by

AM =my(R) + J*/R?, (32)
__DPolp+p)
AR= == |-x’ )

where p(r) and p(r) are the pressure and the total mass-energy density at the radial
distance r from the center of the star.

For purpose of estimating the angular momentum evolution of the accreting neutron
star (discussed in the next section), we need to know the baryonic mass of the rotating
neutron star. The rotation induced change in the baryonic mass (denoted by AMy) is
conveniently written as

AMy=AE, + AM, (34)

where AEy is the rotation induced change in the binding energy of the star (HT):

R
AE;= —J*/R® + j 47r? B(r)dr, | (35)

0

d om\ 12 de(  2m\"i2
swsennfg][1-2) - 52"
-3/2
+(p—8)<1———2~rn—1) [%4——;—]'27'20')2}

1 [1,, /(do\ 1d7, _,

‘W[Ef " (d_) BT ] | (36)
and ¢ = p — myn is the density of internal energy, with n(r) and my, denoting respective-
ly, the baryonic density and rest mass.

Density profiles of neutron stars are remarkably flat out to r = (0-8—0-85)R(Datta
et al. 1995). Therefore, the concept of rotational secular instability in the context of
Maclaurin spheroids (Chandrasekhar 1969) is a relevant approximation when con-

sidering the rotational stability of neutron stars. For a uniformly rotating homogene-
ous spheroid, this instability corresponds to an angular velocity Q = Q_, given by

where

QZ

=018 37
2nGp 018, (37)

where g is the average density of the star. The quantity Q sets a rough limit up to which
the neutron star can be spun up, before the onset of rotational instabilities.
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The prescription mentioned earlier to calculate the mass and radius of a rotating
relativistic star is valid only for rotation rates that are ‘slow’ in comparison to Q..
Hartle & Thorne (1968) constructed ‘slowly’ rotating neutron star models all the way
up to Q= Q, for the Harrison-Wheeler and Tsuruta-Cameron equations of state. Here
we shall only consider rotating neutron stars with Q =€), because of the secular
instability consideration, and will employ the newer equation of state models men-
tioned earlier; these models will then illustrate the maximal reasonable effects of
rotation. Since Q, = (0-27)'/2 Q,, the models constructed by us are adequately treated in
the limit of ‘slow’ rotation. To treat the maximal possible effects of rotation, one has to
go beyond this limit, and use a technique similar to that employed by Cook et al. (1994a, b)
for very rapidly (but still uniformly) rotating neutron stars; they determined that spin-up to
the millisecond pulsar regime is possible for a wide range of equations of state.

4. Results and conclusions

In Table 1 we give the neutron star properties calculated for the various equations of
state as a function of the central density (p.)- Columns (3) and (4) list the non-rotating
mass and radius. Column (5) gives the corresponding value of Q, and columns (6) and
(7) give the differences between the rotating and non-rotating neutron star mass and
radius. Column (8) gives the non-rotating values of r_, while column (9) shows how
o deCreases due to rotation. Typical increases in mass are (5-11)%, in radius < 4%,
while r ., decreases between 15% and 25%.

In the second and third columns of Table 2 we give values of the non-rotating mass
M and the rotationally enhanced mass M’ for a maximal reasonable rotation rate
(Q=0Q,). Columns (4) and (7) show the disk and boundary layer luminosities for
non-rotating configurations (E, and Eg respectively). The values of E; and E,
including rotational effects treated consistently within the HT framework, are given in
columns (5) and (8). All values of luminosity listed in the table are in units of the
baryonic rest mass. The boundary layer luminosity values listed in Table 2 do not
include corrections for the energy that goes into spinning up the neutron star. We have
made estimate of this correction following the prescription of Popham & Narayan
(1995) for the case of 1-4 M o heutron star corresponding to the EOS model by Wiringa
et al. (1988). This is shown in Fig. 1 which is a plot of the rotational energy correction
E, . In units of the particle rest mass vs. the stellar rotation rate Q. It is clear from this
figure that the rotational energy correction to the boundary layer luminosity tends to
become unimportant as the angular velocity approaches very high values. For Q = Q,,
E., ~ 0-048; thisis an order of magnitude less than the boundary layer luminosity given
in Table 2. Therefore the neglect of rotational energy correction to calculate E. for the
neutron star rotating at the limiting Q as considered by us does not result in a gross
overestimate.

We find that as M’ increases, the luminosity in the boundary layer increases
monotonically. The disk luminosity increases in the rotational case as compared to the
static case; the increase, illustrated in column (6), is most significant (2 30%) for high
M’ values. The fractional changes AE /E; values (column (9)), however, exhibit
a non-monotonic behaviour with increasing M’, though they typically decrease by
a few per cent. Further, as is well known, we see that the radius of the innermost stable
orbit is less than the static case (where Tory = OM) for all equations of state considered.
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We now make a few remarks about the angular momentum evolution of the
accreting neutron star. In performing the angular momentum evolution calculations,
we have made the following additional assumptions:

m The central density of the neutron star does not change with mass accretion. This is
a reasonable assumption to make because for a static, stable neutron star, while the
central density increases with increasing mass, the rotation tends to ‘decrease’ the
central density. Thus if the total accreted mass is not large, the effect of rotation will
nearly compensate for the effect of accretion on the central density;

e The mass accretion rate is equal to dMg/dt as in KW, but with the difference that
rotational effects have been taken into account, that is, M, ., = dM7/dt;

m The maximum angular momentum for a particular neutron star configuration is
determined by the secular instability limit:

Q=0 =(027)'2Q,.
KW derived the evolution equation

dJ o dM,  dM,

dM’ dm’

(38)

and solved it under the simplifying assumptions

dM, _dM,

M =M T ~anm

For dMy/dM, KW used a fit to the values of M and R taken from Arnett & Bowers
(1977). Here, we solve equation (38) numerically, incorporating the effect of rotation as
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Table 3. Gravitational and Baryonic Masses as Functions of Angular Momentum.

Pc J
EOS Model (gem™®) M/M, MMy M/ M (g em® s71)
) @ @ @ G (6
Pandharipande (N) 1.83E15  1.400 1.400 1.567 0.000£00

1.413 1.578 2.526 F'48
1.426 1.589 3.648F£48
1.438 1.599 4.420F48
1.467 1.623 5.823F48

Pandharipande (Y) 4.79E15 1.400 1.400 1.615 0.000E00
1.416 1.627 3.269FE48

1.432 1.639 4.660F48

1.448 1.652 5.T72F48

1.466 1.665 6.746 E48

Bethe-Johnson V (N)  1.37E15 1.400 1.400 1.556 0.000E00
1.420 1.572 3.139F48

1.440 1.589 4.424 F48

1.460 1.606 5.422F48

1.500 1.639 6.992F48

Walecka 8.02E14 1.400 1.400 1.671 0.000E00
1.430 1.699 3.760E48

1.486 1.750 6.318E48

1.500 1.764 6.844E48

1.516 1.779 7.370E48

Wiringa UV14 + UVII  1.04E15 1.400 1.400 1.562 0.000F00
1.420 1.578 3.050F48

1.443 1.598 4.538F48

1.467 1.618 5.655E48

1.512 1.656 7.291F48

Chiral Sigma Model 4.06E14 1.400 1.400 1.521 0.000E00
' 1.434 1.549 3.975E48

1.472 1.581 5.760E48

1.505 1.609 6.976 £48

1.539 1.638 8.031F48

outlined above. We assume that for a central density that gives a gravitational mass of
1-4 M in the non-rotating case, J = Q = 0, and we then vary Q from zero to Q.. The
results are presented in Table 3; these should be compared with Table 1 of KW.
From Table 3, we see that for each equation of state, a plot of M 5 VS M’ gives an
almost constant slope. We solve equation (38) using the boundary condition J = 0 for
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Figure 2. Evolution of the dimensionless angular momentum, j = J/M?, of a neutron star with
the accretion of mass, for six representative equations of state. The dashed curves correspond to
the approach of KW, and the solid curves to our more self-consistent approach.
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M'=1-4M configuration. We integrate it either until M’ = M maxs Where M?_ is the
mass corresponding to J,_ . or until J = J may (the last entry for J in Table 3) whichever
comes first.

The results of our computations for the angular momentum are illustrated in Fig. 2.
The x-axis corresponds to M'/M o and the y-axis to J/M'% The dashed curves
correspond to the angular momentum evolution computed in the fashion of KW, while
the solid curves represent the results of the more self-consistent (numerical) estimates
made by us as described above. The graphs indicate a slower rate of evolution of the
accreting neutron star’s angular momentum in the rotational case as compared to the
case where rotational effects are not treated.

There are two factors contributing to the slower evolution of the angular momentum
that we obtain. The less significant one is a comparatively smaller value of dMy/dM’.
The more significant factor is that the angular momentum 7 of the accreted particle is
systematically less in the rotational case. Our calculations include the fact that infalling
material co-rotating with the neutron star has a smaller cross-section for accretion than
does counter-rotating infalling matter, so that the effective angular momentum is
reduced (e.g., Misner, Thorne, & Wheeler 1974). Within the realm of overlap of our
approximations, the results we find agree reasonably well with those of Cook et al.
(1994a,b) for accretion induced changes of angular momentum.

5. Discussion

In presenting the results in the previous section, we have made the implicit assumption
that the magnetic field of the neutron star is too small to affect accretion. Clearly,
a quantitative estimate of this limit is in order. The Alfvén radius (r,), is defined by the
relationship (see Lamb, Pethick & Pines 1973)

B*(r,)
8n

= p(r )o3(r ), (39)

where p and v are respectively the density and radial velocity in the accretion disk,
determines the location at which magnetic pressure channels the flow from a disk into
anaccretion column structure above the magnetic poles. Lamb, Pethick & Pines (1973)
show that

477 1/7
1 (M/M,)
raS2:6x 108 [ S |om (40)

where 3 =B R%/10°°Gem?, L., is the total luminosity in units of 1037 ergs™!,
R, =R/10%cm and B, is the magnetic field on the surface of the neutron star in gauss.
The condition that r, < R implies that (taking M = 1-4 M and R, = 1)

B, <55x 107 LL2, (41)

and is necessary for the scenario we have discussed to be fully self-consistent, but fields
somewhat higher than this value will not greatly modify our conclusions.

In our notation, L= (Ep + Eg)Mc?, with M the accretion rate, According to our
calculations, typical values for (Ep + Eg) are of the order of 0-2. The luminosity L, =1
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would then correspond to an accretion rate ~ 5:6 x 10*®gs ™! Such accretion rates are
close to the ones estimated in X-ray binaries (Ghosh & Lamb 1991), so that our
computations are relevant for systems with significant accretion on to old neutron stars
whose surface magnetic fields have undergone substantial decay (to about 108 G).

Under these circumstances of weak neutron star magnetic fields, we have shown that
an incorporation of rotational effects always increases the disk luminosity, usually
decreases the boundary layer luminosity, and always reduces the rate at which the
neutron star’s angular momentum rises with accreted mass. These effects are large
enough to merit their consideration in analyses of observations of low-mass X-ray
binaries.
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