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Optimal barrier subdivision for Kramers’ escape rate

MULUGETA BEKELE'*, G ANANTHAKRISHNA?Z and N KUMAR?!

*On leave from: Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa,
Ethiopia

Department of Physics and 2Materials Research Centre, Indian Institute of Science, Bangalore

560012, India
3Raman Research Institute, C.V. Raman Avenue, Bangalore 560080, India

MS received 1 March 1996; revised 12 April 1996

Abstract. We examine the effect of subdividing the potential barrier along the reaction
coordinate on Kramers’ escape rate for a model potential. Using the known supersymmetric
potential approach, we show the existence of an optimal number of subdivisions that maximizes

the rate.
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1. Introduction

The problem of surmounting a potential or, more generally, a free energy barrier is
a classical one that appears in all processes having thermally activated kinetics. This
problem was originally addressed by Kramers in the context of a bistable potential
energy curve [1]. He provided an approximate solution for the rate of escape over the
barrier in a high barrier low noise limit. In the commonly encountered high friction
limit, the bistable potential is usually parameterized in terms of the height of the barrier
at the potential maximum and the width of, or the distance under the barrier
connecting the initial and the final states (potential minima). Since Kramers’ original
work, there has been a number of refinements as well as varied novel applications of his
solution, and a large volume of literature exists on this [2,3].

There are, however, situations where the initial and the final states are separated by
a barrier which is so high that the estimated reaction rate is very small, and yet the
reaction actually turns out to proceed at a substantially higher rate. The enhancement
is attributed to the catalytic action, notably of an enzyme in a biochemical reaction that
forms a ‘transition state’ complex with the substrate giving a reduced barrier height [4].
We, however, envisage here an alternative scenario where the enzyme effectively
reduces the activation energy by subdividing the reaction path into a number of
discrete steps each requiring a much smaller barrier crossing. These subdivisions are
expected to correspond to the discrete conformational/configurational changes of the
macromolecules, proteins say. Besides looking for a physical consequence of the barrier
subdivision, in its own right, the problem can be viewed as an exercise on rate processes
in dissipative systems. In the present work we have considered the effect of the barrier
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subdivision on the reaction rate in the high friction limit. This we have done for
a W-shaped model potential barrier whose subdivision can be well parameterized. Our
analysis of the problem is based on the supersymmetric potential technique [5-7].

2. The methodology

It is sufficient for our purpose to note that in the high friction limit, Kramers’ escape
problem is one of solving the Smoluchowski equation (SE):

3 ifo
EP(X,I)=D'6—X(5;+ﬂU (X))P(X,t), (H

N

where P(x,t) is the probability density associated with the particle position,
U’(x) = dU/dx with U (x) being the ‘double well’-potential, D the diffusion constant and
B=(kT)™!is the inverse temperature. With the ansatz

P(x,f) = ¢(x)e " FUD2g~ 4 )
the SE is converted to an Euclidean Schrodinger equation for ¢:
H,¢p.=E,¢, 3)
with H, = A" A being positive semi-definite, where E, = A/D and
Ja 1
A=—+pU’ 4
F 2ﬁ (x) (4)
0 1
At = -2 L ZpU ). 5
= -+ AU ()

This Hamiltonian H, corresponds to the motion of a particle in the potential

| S L
V,(x)= E'BU (%) _EﬁU (). (6)

For a high barrier, the escape rate is determined by the smallest nonzero eigenvalue,
A, = DEL , of the SE where E, is the eigenvalue of the first excited state of eg. (3). On the
other hand, this eigenstate is degenerate with the ground state ¢ of the ‘supersymmet-
ric partner potential’ V_(x) given by

1., L | .
v_(9=(3p0 (x)> +1pU" )

sothat H_¢° =E_¢° with H_ = AA* and E_ = E* . The problem thus boils down
to finding the ground state eigenvalue of this ‘partner’ potential.
3. The model and its solution

3.1 The model potential and parameterization of subdivision

For simplicity we consider a symmetric W-potential. For a full characterization of this
potential we require two parameters, namely, the height U, and the width under the
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Figure 1. (a) The model potential. (b) Plot of the subdivided model potential: U(x)
versus X, when N = 3. Note the change in the slope of the left- and right-confining
walls from that of (a). (c) Plot of V_(x) versus x (not to scale). (d) A figure showing
a step of the subdivided potential found between the intervals x, and x__ , .

potential 2L, (see figure 1a). We now subdivide the barrier between the initial and final
states into a series of smaller connecting barriers of many steps (see figure 1b). In order
to examine the effect of barrier subdivision on the reaction rate systematically, it is
necessary to parameterize the subdivision in a physically, reasonable manner. Consider
the step located between x, and x, . , (figure 1d). We choose U, U, and the associated
widths a, b (shown in the figure) such that U,/a = U,/b. This choice simplifies the
calculation further. Note that x,, , — x, = a + b. If we have a total of N such equally
spaced steps from the top of the barrier on either side, then L, = Na + (N — 1)b, while
Uy=NU, —(N - 1)U,. We introduce a parameter p defined as

(N—-1)U, (N-1)b A
= . 8

P= "Ny, Na ®)

The aim is, given U, and L, to find the escape rate for different values of barrier
subdivision consistent with the high barrier limit, ie. for various values of N. Such

parameterization is physically reasonable as it not only keeps the barrier height and its
width fixed, it also keeps the area under the barrier approximately constant as N is
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varied. Introducing a dimensionless potential u(x)=38U(x), the ‘supersymmetric
partner potential’ to V_ (x), namely, V_(x), is given by

V_(x) = (x))* + u"(x) . 9
which for the considered potential takes the form
2 ~ +N
V_(x)= (ﬂ> — <L—u’) Z [6(x —x,)—d(x —x,—a)], (10)
\d a n=-N

where u, =1fU . Note that the potential V__(x) is a series of attractive and repulsive
delta-potentials superimposed over a constant potential (see figure I1c). Changing the
variable x to y = x/Na leads to a new Hamiltonian h_ given by

52 +N
h_=alH_=— prci (u?)? —2ul ;N [6(y—y,)—d(y—y,—a)] (11
where a, = Na, u{ =Nu,, a, =1/N, b, = p/(N —1) and y, =n(a, +b). With this,
h_¢°(v)=e_¢°(y), where e_ is a dimensionless quantity equal to a2 E _.

3.2 Solution

We use transfer matrix method to find the ground state energy. The ground state wave
function ¢° is of the form Ae ™ + Be*” peaked around the positions of the delta
potentials. Consider one period of the potential, say, the interval between y, and y, . ,.
Assume the wave function of the form

¢1(.V)= A"e--k(\'—y.) + B,,e"“""'". (12)
for the interval ¥, _, + a, < y <y, and the wave function of the form
¢2(y)=C"e""‘-"_v“'~"'"+D"e"‘3"”~_"') (13)

for the interval y, <y <y, +a, with k=[(?)?—e_]'% By matching the wave
function at y,, i.e. ¢,(x,) = @,(y,), and the integrating eq. (11) around y, noting that
there is a negative delta-potential of strength 2u$, i.e. ¢/ (v,) — #5(¥,) —2ud ¢, (v,) = 0.

we get
/C (1+2)e ke ge~k A A
n = n —_ T n 14
(o) =(" 1" (e )(5)-m(5) o
relating the two pairs of amplitudes (x = u?/k). Next, matching the wave function
having amplitudes C, and D, with the wave function having amplitudes 4,,, and

B,,, found in the interval y, + a, <y <y,.,,) and integrating eq. (11) around y, + a,
noting that a positive delta-potential of strength 2u{ is located there. we get

A, (i —x)e™  —xeTkh \ /C C)
" = "1=T " . 15
(B,,ﬂ) ( e (1+xe /\D,) T 2\D, LY

The transfer matrix, T. relating the amplitudes 4, , ,. B, . , to theamplitudes 4, and B,.

. A"+] _ A".
(Bn-i-l)_T(Bn) ' (16)
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will then be a product of the matrices T, and T,. i.e. T.=T,T,. The amplitudes just
before the end of the N-th step 4. B, are related to the amplitudes 4,,. B, at the top left
side of the barrier by a product of N of these transfer matrices

Ay (A4
h ___TI\ o . 17
()~ (5:) &

Symmetry of the potential about y = 0 implies that the ground state wave function is
symmetric, i.e., #° (— y) = ¢° (y). Using matching and integration at and around the
origin where there is a negative delta-potential with the symmetry property of the wave
function relates 4, and B,,,
142

Bo = 1_;_1140. (18)
Since we are concerned with a bound state solution, By = 0. Using this and eq. (18) in
eq. (17) enables us to get

(1= a)(TY),, + (1 +2)(TY),, =0, ‘ (19)

the lowest positive solution of which gives us the value of e_ when u,, p and N are
specified. The expressions for the matrix elements (T"),, and (T"),, are given in the
Appendix.

4. Results and discussion

Now we consider the solution of eq. (19). The result could be better appreciated if we
compare it with the corresponding escape rate for the original W-potential with no
barrier subdivision (figure 1a). Applying the same technique as above, the equation
corresponding to eq. (19) to be solved is

%o+ (1 — 24)e2* =0, (20)

where a =ug/ko. ko =[ud —e®]"? with u,= }BU,. In this case, e2 = L§E®. The
inverse of DE? is the time required to go from one minimum to the other in figure(la)
and we define the corresponding escape rate as DE? for the original "W’ potential. Then
the ratio, fy, of the escape rate. DE_. over the potential with a certain barrier
subdivision to that of escape rate, DE® . over the original W-potential is given by

f~s%=(1+pv§g—. (21)
We call this ratio, fy, as the enhancement fuctor. It may be worthwhile pointing out
here that we have used the first passage time from one minimum to the other in the
original potential as a scale factor. This is because the subdivided potential is rugged on
the ‘down hill part’ as well. which could give rise to a considerably different transit time
compared to the situation if only ‘sliding down’ on a smooth line were allowed.
There are only two parameters in our model, namely u,. which is the total barrier
height and p, which essentially represents the steepness of the local barriers. We chose
u, (so as to be in the high barrier limit) holding p fixed and explored the enhancement
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Figure2. Plots off, versus N for three different values of ug (i.c. 60,90, 12:0) with
fixed p( = 0-8). Note that all the optimal values occur at N=09.
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Figure3. Plotsoff, versus N for four different values of p (i.e.0:4,0-6,0-8,0-9) with
fixed uy(=9-0). ’

factor, fy, for various values of barrier subdivision, N. Figure 2 shows plots of fy versus
N for three different choices of u, with fixed p (= 0:8). For this case, the enhancement
factor at the optimal barrier subdivision, N, increases as u, is increased reaching
a value as high as 35 for u, = 12:0, while N, remains constant (here 9) suggesting that
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the steepness of the local barrier determines N, In figure 3, we have varied p for a fixed
value of uy(= 9-0). In this case, both N, and the enhancement factor increase as p is
increased. (Note that in both the figures N starts at values larger than 2 for higher
values of p. This is due to the fact that for these values of p, the enhancement factor is
less than unity for low values of N and correspond to the situation where U, > U, .)

We have verified that these trends are general. Thus, there is an optimal value of
barrier subdivision, N, at which the escape rate takes a maximum value. The
existence of N may be readily understood by a reference to the potential ¥_(x). The

- binding energy of this localized ground state of the individual negative energy
delta-functions and its lowering due to mutual overlap of the neighbouring bound
states (banding effect) are oppositely affected by N.

It may be worthwhile to mention here that in addition to changing the terrain (say
steepness) of the intermediate barrier (connecting the initial and final states) by the
subdivision, the outer barriers were also made to change their steepness accordingly for
the sake of simplicity (see figures 1a and 1b). Because of this increased steepness, they
become more confining than with their original slope and, thus, give rise to an
overestimation of the enhancement factor. We have verified this by retaining the
original slope of the outer barriers. However, the main features remain the same. On the
other hand, due to the monotonic increase of the optimal enhancement factor with the
barrier height, its value could be much larger than the ones considered here for barrier
heights that exist in chemical and physical processes.

We remark that this problem can be viewed, approximately, as that of finding the
mean first passage time of a biased random walk [8]. However, this would imply
assigning values to the forward and the backward transition rates for the individual
sub-barriers taken in isolation as input, i.e. assuming that the potentials to the left and
right sides of each sub-barrier are totally confining, and then using these input values to
calculate the global escape rate for the coupled sub-barriers. We have found that while
this gives an optimal barrier subdivision for the escape rate consistent with the present
result, the enhancement factor is considerably over-estimated by this random walk
approach. The present SUSY-based calculation goes beyond this uncontrolled ap-
proximation.

It would be interesting to examine and optimize the effect of an athermal (possibly
colored) noise (the ‘blow torch’ of Landauer [9,10]) on one of the steps of our
subdivided potential curve. This is under investigation.

In conclusion, we have shown that the Kramers’ rate for the escape over a given
potential barrier, in the high barrier high friction limit, can be substantially enhanced
by subdividing the barrier optimally. This might provide an alternative scenario for
certain activated processes where the measured escape rate is substantially higher than
that anticipated. :

Appendix A

To find the elements of the matrix T" we decompose the transfer matrix T as a product
of three matrices, i.e.

T=RAL | (Al)
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so that A is a diagonal matrix whose diagonal elements are the eigenvalues of T. The
matrices L and R are, respectively, made up of the left-and right-eigenvectors of T such
that LR = RL = L. With this decomposition.

TV =RANL (A2)

whose two elements of our interest, (T"),, and (T™),, are expressed as
’ _ N N
(1), = Tl =2zt 22) (A3)
Q
and
_ SN N SN 4 3N
(TN)u:(Tu Ty )42 2’Q~+)+(’~- +’~+)Q. (Ad)

+, are the eigenvalues 6f T given by

1

ry = '2'(T1 1+ T, 20) (A5)
with Tj; as the matrix elements of Tand 0 =[(T,, — T3,)* + 4T12T2, 12,
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