Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/3821
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFujita, Ryuichi-
dc.contributor.authorHikida, Wataru-
dc.date.accessioned2009-07-31T10:55:52Z-
dc.date.available2009-07-31T10:55:52Z-
dc.date.issued2009-
dc.identifier.citationClassical and Qunatum Gravity, 2009, Vol. 26, 135002en
dc.identifier.issn0264-9381-
dc.identifier.issn1361-6382 (online)-
dc.identifier.urihttp://hdl.handle.net/2289/3821-
dc.descriptionRestricted Access. An open-access version is available at arXiv.org (one of the alternative locations)en
dc.description.abstractWe derive the analytical solutions of the bound timelike geodesic orbits in Kerr spacetime. The analytical solutions are expressed in terms of the elliptic integrals using Mino time λ as the independent variable. Mino time decouples the radial and the polar motion of a particle and hence leads to forms more useful to estimate three fundamental frequencies, radial, polar and azimuthal motion, for the bound timelike geodesics in Kerr spacetime. This paper gives the first derivation of the analytical expressions of the fundamental frequencies. This paper also gives the first derivation of the analytical expressions of all coordinates for the bound timelike geodesics using Mino time. These analytical expressions should be useful not only to investigate physical properties of Kerr geodesics but more importantly to applications related to the estimation of gravitational waves from the extreme mass ratio inspirals.en
dc.language.isoenen
dc.publisherIOP Publishing Ltd.en
dc.relation.urihttp://dx.doi.org/10.1088/0264-9381/26/13/135002en
dc.relation.urihttp://arxiv.org/abs/0906.1420en
dc.relation.urihttp://adsabs.harvard.edu/abs/2009CQGra..26m5002Fen
dc.rights2009 IOP Publishing Ltd.en
dc.titleAnalytical solutions of bound timelike geodesic orbits in Kerr spacetimeen
dc.typeArticleen
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2009 CQG V26 p135002.pdf
  Restricted Access
Restricted Access292.95 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.