Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/6353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCampiglia, Miguel-
dc.date.accessioned2015-11-28T13:40:34Z-
dc.date.available2015-11-28T13:40:34Z-
dc.date.issued2015-07-23-
dc.identifier.citationClassical and Quantum Gravity, 2015, Vol.32, p145011en_US
dc.identifier.issn0264-9381-
dc.identifier.issn1361-6382 (E)-
dc.identifier.urihttp://hdl.handle.net/2289/6353-
dc.descriptionRestricted Access. An open-access version is available at arXiv.org (one of the alternative locations)en_US
dc.description.abstractWe describe the canonical phase space of asymptotically flat gravity in Ashtekar–Barbero (AB) variables. We show that the Gauss constraint multiplier must fall off slower than previously considered in order to recover ADM phase space. The generators of the asymptotic Poincare group are derived within the AB phase space without reference to the ADM generators. The resulting expressions are shown to agree, modulo Gauss constraint terms, with those obtained from the ADM generators. A payoff of this procedure is a new expression for the generator of asymptotic rotations, which is polynomial in the triad and hence better suited for quantum theory. Our treatment complements an earlier description by Thiemann in the context of self-dual variables.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltd.en_US
dc.relation.urihttp://arxiv.org/abs/1412.5531en_US
dc.relation.urihttp://dx.doi.org/10.1088/0264-9381/32/14/145011en_US
dc.relation.urihttp://adsabs.harvard.edu/abs/2015CQGra..32n5011Cen_US
dc.rights2015 IOP Publishing Ltd.en_US
dc.subjectCanonical phase spaceen_US
dc.titleNote on the phase space of asymptotically flat gravity in Ashtekar–Barbero variablesen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2015_CQG_32_145011.pdf
  Restricted Access
Restricted Access284.16 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.