Please use this identifier to cite or link to this item:
http://hdl.handle.net/2289/6383
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Buck, Michel | - |
dc.contributor.author | Dowker, Fay | - |
dc.contributor.author | Jubb, Ian | - |
dc.contributor.author | Surya, Sumati | - |
dc.date.accessioned | 2016-09-20T06:13:10Z | - |
dc.date.available | 2016-09-20T06:13:10Z | - |
dc.date.issued | 2015-10-22 | - |
dc.identifier.citation | Classical and Quantum Gravity, 2015, Vol.32, p 205004 | en_US |
dc.identifier.issn | 0264-9381 | - |
dc.identifier.issn | 1361-6382(Online) | - |
dc.identifier.uri | http://hdl.handle.net/2289/6383 | - |
dc.description | Restricted Access. An open-access version is available at arXiv.org (one of the alternative locations) | en_US |
dc.description.abstract | We propose a family of boundary terms for the action of a causal set with a spacelike boundary. We show that in the continuum limit one recovers the Gibbons–Hawking–York boundary term in the mean. We also calculate the continuum limit of the mean causal set action for an Alexandrov interval in flat spacetime. We find that it is equal to the volume of the codimension-2 intersection of the two light-cone boundaries of the interval. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Physics | en_US |
dc.relation.uri | http://arxiv.org/abs/1502.05388 | en_US |
dc.relation.uri | http://dx.doi.org/10.1088/0264-9381/32/20/205004 | en_US |
dc.relation.uri | http://adsabs.harvard.edu/abs/2015CQGra..32t5004B | en_US |
dc.rights | 2015 Institute of Physics | en_US |
dc.title | Boundary terms for causal sets | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Papers (TP) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2015_CQG_32_205004.pdf Restricted Access | Restricted Access | 449.41 kB | Adobe PDF | View/Open Request a copy |
Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.