Please use this identifier to cite or link to this item:
http://hdl.handle.net/2289/7188
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Setia, Shilpa | - |
dc.contributor.author | Kumar, Sandeep | - |
dc.contributor.author | Adhikari, Debashis | - |
dc.contributor.author | Pal, Santanu Kumar | - |
dc.date.accessioned | 2019-04-01T19:27:51Z | - |
dc.date.available | 2019-04-01T19:27:51Z | - |
dc.date.issued | 2019-03 | - |
dc.identifier.citation | Liquid Crystals, 2019, Vol.46, NO. 3, p 430–441 | en_US |
dc.identifier.issn | 0267-8292 | - |
dc.identifier.issn | 1366-5855 (Online) | - |
dc.identifier.uri | http://hdl.handle.net/2289/7188 | - |
dc.description | Restricted Access. | en_US |
dc.description.abstract | The hexakis-alkoxy substituted hexa-peri-hexabenzocoronene (HBC) discotic core is desirable aiming at strong π–π interactions in columns, electronic tuning of the core and better process-ability. The feasibility of synthesising a new hexakis-alkoxy substituted HBC core is investigated and described in this report. Experimentally, it has been found that when two alkoxy substituents in a peripheral aromatic ring are placed meta to each other, the Scholl reaction results in fully cyclised HBC product. Surprisingly, when the alkoxy groups are ortho to each other, cyclodehydrogenation results in the formation of a partially fused product. This partially-fused ring formation happens under varying reaction conditions and irrespective of the differing alkyl chain lengths. Most plausibly, the considerable strain in the fully fused molecule from 1,2 isomer is the reason to cease the reaction at the partially fused stage. Further quantum-mechanical calculations at the B3LYP/6-31G(d) level of theory also support the hypothesis. The incorporation of two electron donating groups has also reduced the band gap compared to its mono alkoxy analogue. Reduced band gap values are promising feature of these molecules for finding future applications of disco-tic liquid crystals in organic electronics. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.uri | https://doi.org/10.1080/02678292.2018.1508765 | en_US |
dc.rights | 2019 Taylor & Francis | en_US |
dc.subject | Hexabenzocoronene | en_US |
dc.subject | alkoxy | en_US |
dc.subject | Scholl reaction | en_US |
dc.subject | hexaphenylbenzene | en_US |
dc.title | Scholl reaction of hexaphenylbenzenes with hexakis-alkoxy substituents | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Papers (SCM) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019_Liquid Crystals_Vol.46_p430-441.pdf Restricted Access | Restricted Access | 2.08 MB | Adobe PDF | View/Open Request a copy |
2019_Liquid Crystals_Vol.46_p430-441.epub Restricted Access | Restricted Access | 503.52 kB | EPUB | View/Open Request a copy |
Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.