Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7753
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVyas, Vivek M.-
dc.contributor.authorRoy, Dibyendu-
dc.date.accessioned2021-04-07T08:25:22Z-
dc.date.available2021-04-07T08:25:22Z-
dc.date.issued2021-02-
dc.identifier.citationPhysical Review B, 2021, Vol.103, p075441en_US
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969 (online)-
dc.identifier.urihttp://hdl.handle.net/2289/7753-
dc.descriptionOpen Accessen_US
dc.description.abstractA non-Hermitian generalization of the Su-Schrieffer-Heeger model driven by a periodic external potential is investigated, and its topological features are explored. We find that the bi-orthonormal geometric phase acts as a topological index, well capturing the presence/absence of the zero modes. The model is observed to display trivial and nontrivial insulator phases and a topologically nontrivial Möbius metallic phase. The driving field amplitude is shown to be a control parameter causing topological phase transitions in this model. While the system displays zero modes in the metallic phase apart from the nontrivial insulator phase, the metallic zero modes are not robust, as are the ones found in the insulating phase. We further find that zero modes' energy converges slowly to zero as a function of the number of dimers in the Möbius metallic phase compared to the nontrivial insulating phase.en_US
dc.language.isoenen_US
dc.publisherAmerical Physical Societyen_US
dc.relation.urihttps://arxiv.org/pdf/2011.06947.pdfen_US
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2021PhRvB.103g5441V/abstracten_US
dc.relation.urihttps://doi.org/10.1103/PhysRevB.103.075441en_US
dc.rights2021 The American Physical Societyen_US
dc.titleTopological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger modelen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2021_Phys Rev B_Vol.103_Article No.075441.pdfOpen Access10.9 MBAdobe PDFView/Open


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.