Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7778
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Siddhartha-
dc.contributor.authorSharma, Prateek-
dc.contributor.authorMignone, Andrea-
dc.date.accessioned2021-06-24T09:33:12Z-
dc.date.available2021-06-24T09:33:12Z-
dc.date.issued2021-04-
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, 2021, Vol. 502, p2733-2749en_US
dc.identifier.issn0035-8711-
dc.identifier.issn1365-2966 (Online)-
dc.identifier.urihttp://hdl.handle.net/2289/7778-
dc.descriptionOpen Accessen_US
dc.description.abstractCosmic rays (CRs) are frequently modelled as an additional fluid in hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations of astrophysical flows. The standard CR two-fluid model is described in terms of three conservation laws (expressing conservation of mass, momentum, and total energy) and one additional equation (for the CR pressure) that cannot be cast in a satisfactory conservative form. The presence of non-conservative terms with spatial derivatives in the model equations prevents a unique weak solution behind a shock. We investigate a number of methods for the numerical solution of the two-fluid equations and find that, in the presence of shock waves, the results generally depend on the numerical details (spatial reconstruction, time stepping, the CFL number, and the adopted discretization). All methods converge to a unique result if the energy partition between the thermal and non-thermal fluids at the shock is prescribed using a subgrid prescription. This highlights the non-uniqueness problem of the two-fluid equations at shocks. From our numerical investigations, we report a robust method for which the solutions are insensitive to the numerical details even in absence of a subgrid prescription, although we recommend a subgrid closure at shocks using results from kinetic theory. The subgrid closure is crucial for a reliable post-shock solution and also its impact on large-scale flows because the shock microphysics that determines CR acceleration is not accurately captured in a fluid approximation. Critical test problems, limitations of fluid modelling, and future directions are discussed.en_US
dc.language.isoenen_US
dc.publisherOxford University Press on behalf of the Royal Astronomical Societyen_US
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2021MNRAS.502.2733G/abstracten_US
dc.relation.urihttps://arxiv.org/abs/1906.07200en_US
dc.relation.urihttps://doi.org/10.1093/mnras/stab142en_US
dc.rights2021 The Author(s)en_US
dc.subjecthydrodynamicsen_US
dc.subjectshock wavesen_US
dc.subjectmethods: numericalen_US
dc.subjectcosmic raysen_US
dc.titleA numerical approach to the non-uniqueness problem of cosmic ray two-fluid equations at shocksen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (A&A)

Files in This Item:
File Description SizeFormat 
2021_MNRAS_Vol.502_p2733.pdfOpen Access2.17 MBAdobe PDFView/Open


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.