Please use this identifier to cite or link to this item:
http://hdl.handle.net/2289/7845
Title: | Using the redshift evolution of the Lyman-alpha effective opacity as a probe of dark matter models |
Authors: | Sarkar, Anjan Kumar Pandey, Kanhaiya L. Sethi, S.K. |
Issue Date: | Oct-2021 |
Publisher: | IOP Publishing |
Citation: | Journal of Cosmology and Astroparticle Physics, 2021, Issue 10, 077 |
Abstract: | Lyman-α forest data are known to be a good probe of the small scale matter power. In this paper, we explore the redshift evolution of the observable effective optical depth τeff(z) from the Lyman-α data as a discriminator between dark matter models that differ from the ΛCDM model on small scales. We consider the thermal warm dark matter (WDM) and the ultra-light axion (ULA) models for the following set of parameters: the mass of ULA, ma ≃ 10-24–5 × 10-22 eV and WDM mass, m_ wdm = 0.1 – 4.6 keV. We simulate the line-of-sight HI density and velocity fields using semi-analytic methods. The simulated effective optical depth for the alternative dark matter models diverges from the ΛCDM model for z ≳ 3, which provides a meaningful probe of the matter power at small scales. Using likelihood analysis, we compare the simulated data with the high-resolution Lyman-α forest data in the redshift range 2 < z < 4.2. The analysis yields the following 1σ bounds on dark matter masses: m_ wdm > 0.7 keV and m_ a > 2 × 10-23 eV. To further test the efficacy of our proposed method, we simulate synthetic data sets compatible with the ΛCDM model in the redshift range 2 ≤ z ≤ 6.5 and compare with theory. The 1σ bounds obtained are significantly tighter: m_ wdm > 1.5 keV and m_ a > 7 × 10-23 eV. Although our method provides an alternative way of constraining dark matter models, we note that these bounds are weaker than those obtained by high-resolution hydrodynamical simulations. |
Description: | Restricted Access. An open-access version is available at arXiv.org (one of the alternative locations) |
URI: | http://hdl.handle.net/2289/7845 |
ISSN: | 1475-7516 (Online) |
Alternative Location: | https://ui.adsabs.harvard.edu/abs/2021JCAP...10..077S/abstract https://arxiv.org/abs/2101.09917 https://doi.org/10.1088/1475-7516/2021/10/077 |
Copyright: | 2020 IOP Publishing Ltd |
Appears in Collections: | Research Papers (A&A) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021_J._Cosmol._Astropart._Phys_077.pdf Restricted Access | Restricted Access | 635.91 kB | Adobe PDF | View/Open Request a copy |
Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.