Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDey, Rukmini-
dc.contributor.authorSamuel, J.-
dc.contributor.authorVidyarthi, Rithwik S.-
dc.date.accessioned2022-08-25T07:44:14Z-
dc.date.available2022-08-25T07:44:14Z-
dc.date.issued2022-06-01-
dc.identifier.citationReports on Mathematical Physics, 2022, Vol.89, p267en_US
dc.identifier.issn0034-4877-
dc.identifier.urihttp://hdl.handle.net/2289/7985-
dc.descriptionRestricted Access. An open-access version is available at arXiv.org (one of the alternative locations)en_US
dc.description.abstractDo co-adjoint orbits of Lie groups support a Kähler structure? We study this question from a point of view derived from coherent states. We examine three examples of Lie groups: the Weyl–Heisenberg group, SU(2) and SU(1, 1). In cases, where the orbits admit a Kähler structure, we show that coherent states give us a Kähler embedding of the orbit into projective Hilbert space. In contrast, squeezed states (which like coherent states, also saturate the uncertainty bound) only give us a symplectic embedding. We also study geometric quantisation of the co-adjoint orbits of the group SUT(2, ℝ) of real, special, upper triangular matrices in two dimensions. We glean some general insights from these examples. Our presentation is semi-expository and accessible to physicists.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.urihttps://arxiv.org/abs/2105.14283en_US
dc.relation.urihttps://doi.org/10.1016/S0034-4877(22)00033-7en_US
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2021arXiv210514283D/abstracten_US
dc.rights2022 Elsevier B.V.en_US
dc.subjectcoherent statesen_US
dc.subjectsqueezed statesen_US
dc.subjectcoadjoint orbitsen_US
dc.subjectToda systemen_US
dc.titleCoadjoint orbits and Kähler Structure: Examples from Coherent Statesen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2022_RMP_Vol.89_p267.pdf
  Restricted Access
Restricted Access352.47 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.