Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/8079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, A-
dc.date.accessioned2023-04-10T11:58:13Z-
dc.date.available2023-04-10T11:58:13Z-
dc.date.issued2023-04-05-
dc.identifier.citationThe Astrophysical Journal, 2023, Vol. 946, p109en_US
dc.identifier.issn0004-637X-
dc.identifier.issn1538-4357(Online)-
dc.identifier.urihttp://hdl.handle.net/2289/8079-
dc.descriptionOpen Accessen_US
dc.description.abstractThe Fermi fourth catalog of active galactic nuclei (AGNs) data release 3 (4LAC-DR3) contains 3407 AGNs, out of which 755 are flat spectrum radio quasars (FSRQs), 1379 are BL Lacertae objects (BL Lac objects), 1208 are blazars of unknown (BCUs) type, while 65 are non-AGNs. Accurate categorization of many unassociated blazars still remains a challenge due to the lack of sufficient optical spectral information. The aim of this work is to use high-precision, optimized machine-learning (ML) algorithms to classify BCUs into BL Lac objects and FSRQs. To address this, we selected the 4LAC-DR3 Clean sample (i.e., sources with no analysis flags) containing 1115 BCUs. We employ five different supervised ML algorithms, namely, random forest, logistic regression, XGBoost, CatBoost, and neural network with seven features: photon index, synchrotron-peak frequency, pivot energy, photon index at pivot energy, fractional variability, ν F ν, at synchrotron-peak frequency, and variability index. Combining results from all models leads to better accuracy and more robust predictions. These five methods together classified 610 BCUs as BL Lac objects and 333 BCUs as FSRQs with a classification metric area under the curve >0.96. Our results are significantly compatible with recent studies as well. The output from this study provides a larger blazar sample with many new targets that could be used for forthcoming multiwavelength surveys. This work can be further extended by adding features in X-rays, UV, visible, and radio wavelengths.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2023arXiv230314137A/abstracten_US
dc.relation.urihttps://arxiv.org/abs/2303.14137en_US
dc.relation.urihttps://doi.org/10.3847/1538-4357/acbdfaen_US
dc.relation.urihttps://inspirehep.net/literature/2645821en_US
dc.rights2023 The Author(s)en_US
dc.titleClassification of Blazar Candidates of Unknown Type in Fermi 4LAC by Unanimous Voting from Multiple Machine-learning Algorithmsen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (A&A)

Files in This Item:
File Description SizeFormat 
2023_ApJ_946_109.pdf
  Restricted Access
Open Access1.52 MBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.