Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7883
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSengupta, Sandipan-
dc.date.accessioned2022-01-24T04:23:09Z-
dc.date.available2022-01-24T04:23:09Z-
dc.date.issued2011-05-
dc.identifier.citationJournal of Physics: Conference Series, 2012, Vol. 360, p012024en_US
dc.identifier.issn1742-6588-
dc.identifier.issn1742-6596 (Online)-
dc.identifier.urihttp://hdl.handle.net/2289/7883-
dc.descriptionOpen Accessen_US
dc.description.abstractThe most general gravity Lagrangian in four dimensions contains three topological densities, namely Nieh-Yan, Pontryagin and Euler, in addition to the Hilbert-Palatini term. We set up a Hamiltonian formulation based on this Lagrangian. The resulting canonical theory depends on three parameters which are coefficients of these terms and is shown to admit a real SU(2) gauge theoretic interpretation with a set of seven first-class constraints. Thus, in addition to the Newton's constant, the theory of gravity contains three (topological) coupling constants, which might have non-trivial imports in the quantum theory, e.g. in quantum geometry.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.urihttps://arxiv.org/abs/1110.4185en_US
dc.relation.urihttps://doi.org/10.1088/1742-6596/360/1/012024en_US
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2012JPhCS.360a2024S/abstracten_US
dc.rights2012 IOP Publishing Ltd.en_US
dc.titleSU(2) gauge theory of gravity with topological invariantsen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2012_J._Phys. _Conf._Ser._360_012024.pdfOpen Access498.53 kBAdobe PDFView/Open


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.